Discussion Week 2 Partial Solutions: 2/2 MATH 110 GSI: Alex Zorn

- 1. Each of the following claims is **false**. Prove this.
 - 1. $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \operatorname{span}(S_1 \cap S_2)$ for any subsets S_1, S_2 of a vector space V.
 - 2. $\operatorname{span}(S_1) \cup \operatorname{span}(S_2) = \operatorname{span}(S_1 \cup S_2)$ for any subsets S_1, S_2 of a vector space V.
 - 3. Any subset of \mathbb{R}^2 that contains the zero vector and is closed under scalar multiplication is a subspace of \mathbb{R}^2 .
 - 4. Any subset of \mathbb{R}^2 that contains the zero vector and is closed under addition is a subspace of \mathbb{R}^2 .
- **2.** Prove that the span of $\{(1,1,0), (1,-1,0)\}$ is the set $W = \{(x,y,z) \in \mathbb{R}^3 \mid z=0\}$.

Challenge. Theorem 1.5 says that if S is a subset of V, then $\operatorname{span}(S)$ is a subspace of V, $S \subseteq \operatorname{span}(S)$, and if W is any subspace of V containing S, then $\operatorname{span}(S) \subseteq W$. Use this theorem to prove the following without writing any linear combinations.

- 1. A subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W) = W$.
- 2. If $S_1 \subseteq S_2$ then span $(S_1) \subseteq$ span (S_2) .
- 3. For any two subsets S_1, S_2 , $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$.

Solutions:

1.1. Let $V = \mathbb{R}^2$, $S_1 = \{(1,0)\}$, $S_2 = \{(2,0)\}$. Then $\operatorname{span}(S_1) = \operatorname{span}(S_2) = \{(x,0) \mid x \in \mathbb{R}\}$, so $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{(x,0) \mid x \in \mathbb{R}\}$. But $S_1 \cap S_2 = \emptyset$, so $\operatorname{span}(S_1 \cap S_2) = \{(0,0)\}$.

1.2. Let $S_1 = \{(1,0)\}, S_2 = \{(0,1)\}$. Then $\operatorname{span}(S_1 \cup S_2) = \mathbb{R}^2$, but $\operatorname{span}(S_1) \cup \operatorname{span}(S_2)$ is just the union of the x and y axes.

1.3. Take, for example, $\operatorname{span}(S_1) \cup \operatorname{span}(S_2)$ where $S_1 = \{(1,0)\}$ and $S_2 = \{(0,1)\}$.

1.4. Consider $W = \{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0\}.$

2. Let $V = \text{span}(\{(1, 1, 0), (1, -1, 0)\}).$

To prove $V \subseteq W$: Let $\vec{x} \in V$. Then $\vec{x} = a(1, 1, 0) + b(1, -1, 0) = (a + b, a - b, 0)$, so $\vec{x} \in W$.

To prove $W \subseteq V$: Let $\vec{x} \in W$. Then $\vec{x} = (x, y, 0)$ for some $x, y \in \mathbb{R}$. We want to find a, b such that $\vec{x} = a(1, 1, 0) + b(1, -1, 0) \Leftrightarrow (x, y, 0) = (a + b, a - b, 0)$. This has a solution: $a = \frac{x+y}{2}, b = \frac{x-y}{2}$. So $\vec{x} \in V$.

Challenge 1. First assume W is a subspace of V. $W \subseteq \text{span}(W)$ for any set W. Since W is a subspace and $W \subseteq W$, $\text{span}(W) \subseteq W$. So W = span(W).

Now assume $\operatorname{span}(W) = W$. Since W is a subspace, $\operatorname{span}(W)$ is a subspace.