1. Each of the following claims is false. Prove this.
2. $\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=\operatorname{span}\left(S_{1} \cap S_{2}\right)$ for any subsets S_{1}, S_{2} of a vector space V.
3. $\operatorname{span}\left(S_{1}\right) \cup \operatorname{span}\left(S_{2}\right)=\operatorname{span}\left(S_{1} \cup S_{2}\right)$ for any subsets S_{1}, S_{2} of a vector space V.
4. Any subset of \mathbb{R}^{2} that contains the zero vector and is closed under scalar multiplication is a subspace of \mathbb{R}^{2}.
5. Any subset of \mathbb{R}^{2} that contains the zero vector and is closed under addition is a subspace of \mathbb{R}^{2}.
6. Prove that the span of $\{(1,1,0),(1,-1,0)\}$ is the set $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=0\right\}$.

Challenge. Theorem 1.5 says that if S is a subset of V, then $\operatorname{span}(S)$ is a subspace of V, $S \subseteq \operatorname{span}(S)$, and if W is any subspace of V containing S, then $\operatorname{span}(S) \subseteq W$. Use this theorem to prove the following without writing any linear combinations.

1. A subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W)=W$.
2. If $S_{1} \subseteq S_{2}$ then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$.
3. For any two subsets $S_{1}, S_{2}, \operatorname{span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.

Solutions:

1.1. Let $V=\mathbb{R}^{2}, S_{1}=\{(1,0)\}, S_{2}=\{(2,0)\}$. Then $\operatorname{span}\left(S_{1}\right)=\operatorname{span}\left(S_{2}\right)=\{(x, 0) \mid x \in \mathbb{R}\}$, so $\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)=\{(x, 0) \mid x \in \mathbb{R}\}$. But $S_{1} \cap S_{2}=\emptyset$, so $\operatorname{span}\left(S_{1} \cap S_{2}\right)=\{(0,0)\}$.
1.2. Let $S_{1}=\{(1,0)\}, S_{2}=\{(0,1)\}$. Then $\operatorname{span}\left(S_{1} \cup S_{2}\right)=\mathbb{R}^{2}$, but $\operatorname{span}\left(S_{1}\right) \cup \operatorname{span}\left(S_{2}\right)$ is just the union of the x and y axes.
1.3. Take, for example, $\operatorname{span}\left(S_{1}\right) \cup \operatorname{span}\left(S_{2}\right)$ where $S_{1}=\{(1,0)\}$ and $S_{2}=\{(0,1)\}$.
1.4. Consider $W=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \geq 0\right\}$.
2. Let $V=\operatorname{span}(\{(1,1,0),(1,-1,0)\})$.

To prove $V \subseteq W$:
Let $\vec{x} \in V$. Then $\vec{x}=a(1,1,0)+b(1,-1,0)=(a+b, a-b, 0)$, so $\vec{x} \in W$.

To prove $W \subseteq V$:
Let $\vec{x} \in W$. Then $\vec{x}=(x, y, 0)$ for some $x, y \in \mathbb{R}$.
We want to find a, b such that $\vec{x}=a(1,1,0)+b(1,-1,0) \Leftrightarrow(x, y, 0)=(a+b, a-b, 0)$. This has a solution: $a=\frac{x+y}{2}, b=\frac{x-y}{2}$. So $\vec{x} \in V$.

Challenge 1. First assume W is a subspace of V. $W \subseteq \operatorname{span}(W)$ for any set W. Since W is a subspace and $W \subseteq W$, $\operatorname{span}(W) \subseteq W$. So $W=\operatorname{span}(W)$.

Now assume $\operatorname{span}(W)=W$. Since W is a subspace, $\operatorname{span}(W)$ is a subspace.

