Discussion Week 1 Partial Solutions: 1/26 MATH 110 GSI: Alex Zorn

Prove that each of the following is or is not a vector space over \mathbb{R} :

1. $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$

2. U is the set of all real-valued functions on the real line satisfying f(t) < 1 for all t.

3. V is the set of all 2×2 matrices whose trace equals zero.

4. $X = \{(x, y, z) \in \mathbb{R}^3 \mid \text{at least one of } x, y, z = 0\}.$

5. $T = \{ p \in P_3(\mathbb{R}) \mid p(1) = 0 \}.$

Challenge 1. Let v be a nonzero element of a vector space V. Show that the set $\{cv \mid c \in \mathbb{R}\}$ is a subspace of V. These subspaces are called **one-dimensional**.

Challenge 2. If W is a subspace of \mathbb{R}^2 , show that either $W = \{0\}$, $W = \mathbb{R}^2$, or W is onedimensional.

Solutions

1.

This is a vector space, as it is a subspace of \mathbb{R}^3 .

Proof: W contains the zero vector. Assume $\vec{x} \in W$ and $\vec{y} \in W$, and $t \in \mathbb{R}$. Write $\vec{x} = (a_1, b_1, c_1)$, $\vec{y} = (a_2, b_2, c_2)$. We know $a_1 + b_1 + c_1 = 0$ and $a_2 + b_2 + c_2 = 0$.

Then $\vec{x} + t\vec{y} = (a_1 + ta_2, b_1 + tb_2, c_1 + tc_2)$, and:

$$(a_1 + ta_2) + (b_1 + tb_2) + (c_1 + tc_2) = (a_1 + b_1 + c_1) + t(a_2 + b_2 + c_2) = 0 + t \cdot 0 = 0$$

So $\vec{x} + t\vec{y} \in W$.

2.

This is not a vector space. For example, the constant function f(t) = 1/2 is in U, but 3f is not in U, so U is not closed under scalar multiplication.

3.

This is a vector space, proof similar to 1.

4.

This is not a vector space. For example, $(1,0,0) \in X$ and $(0,1,1) \in X$, but $(1,0,0) + (0,1,1) = (1,1,1) \notin X$, so X is not closed under addition.

5.

This is a vector space, proof similar to 1.