Prove that each of the following is or is not a vector space over \mathbb{R} :

1. $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
2. U is the set of all real-valued functions on the real line satisfying $f(t)<1$ for all t.
3. V is the set of all 2×2 matrices whose trace equals zero.
4. $X=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\right.$ at least one of $\left.x, y, z=0\right\}$.
5. $T=\left\{p \in P_{3}(\mathbb{R}) \mid p(1)=0\right\}$.

Challenge 1. Let v be a nonzero element of a vector space V. Show that the set $\{c v \mid c \in \mathbb{R}\}$ is a subspace of V. These subspaces are called one-dimensional.

Challenge 2. If W is a subspace of \mathbb{R}^{2}, show that either $W=\{0\}, W=\mathbb{R}^{2}$, or W is onedimensional.

Solutions

1.

This is a vector space, as it is a subspace of \mathbb{R}^{3}.

Proof: W contains the zero vector. Assume $\vec{x} \in W$ and $\vec{y} \in W$, and $t \in \mathbb{R}$. Write $\vec{x}=\left(a_{1}, b_{1}, c_{1}\right)$, $\vec{y}=\left(a_{2}, b_{2}, c_{2}\right)$. We know $a_{1}+b_{1}+c_{1}=0$ and $a_{2}+b_{2}+c_{2}=0$.

Then $\vec{x}+t \vec{y}=\left(a_{1}+t a_{2}, b_{1}+t b_{2}, c_{1}+t c_{2}\right)$, and:

$$
\left(a_{1}+t a_{2}\right)+\left(b_{1}+t b_{2}\right)+\left(c_{1}+t c_{2}\right)=\left(a_{1}+b_{1}+c_{1}\right)+t\left(a_{2}+b_{2}+c_{2}\right)=0+t \cdot 0=0
$$

So $\vec{x}+t \vec{y} \in W$.

2.

This is not a vector space. For example, the constant function $f(t)=1 / 2$ is in U, but $3 f$ is not in U, so U is not closed under scalar multiplication.
3.

This is a vector space, proof similar to 1 .
4.

This is not a vector space. For example, $(1,0,0) \in X$ and $(0,1,1) \in X$, but $(1,0,0)+(0,1,1)=$ $(1,1,1) \notin X$, so X is not closed under addition.
5.

This is a vector space, proof similar to 1 .

