Quiz \#2: $2 / 2$
MATH 110
Section 119: 10:10-11:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Is the set $W=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2 \times 2}(\mathbb{R}) \right\rvert\, a d-b c=0\right\}$ a subspace of $M_{2 \times 2}(\mathbb{R})$? Justify your answer.

Solution: It is not. For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in W$, and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in W$, but $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is not in W. So W is not closed under addition.
2. (5 pts) Let $p_{1}=1, p_{2}=x^{2}, p_{3}=x^{3}-x$ be elements of $P_{3}(\mathbb{R})$. Show that the span of $\left\{p_{1}, p_{2}, p_{3}\right\}$ is the set of all polynomials p in $P_{3}(\mathbb{R})$ satisfying $p(1)=p(-1)$.

Solution: Let $V=\operatorname{span}\left(\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, and W be the set of of all polynomials p in $P_{3}(\mathbb{R})$ satisfying $p(1)=p(-1)$. Need to show:
$\mathbf{V} \subseteq \mathbf{W}:$

Let $p \in V$. Then $\vec{x}=a p_{1}+b p_{2}+c p_{3}$ for some $a, b, c \in \mathbb{R}$. So $p(1)=a p_{1}(1)+b p_{2}(1)+c p_{3}(1)=a+b$, and $p(-1)=a p_{1}(-1)+b p_{2}(-1)+c p_{3}(-1)=a+b$. So, $p \in W$.

$\mathbf{W} \subseteq \mathbf{V}:$

Let $p \in W$, with $p=a+b x+c x^{2}+d x^{3}$. Then $p(1)=a+b+c+d$ and $p(-1)=a-b+c-d$. So:

$$
\begin{gathered}
a+b+c+d=a-b+c-d \\
\Rightarrow 2 b+2 d=0 \\
\Rightarrow d=-b \\
\Rightarrow p=a+b x+c x^{2}+(-b) x^{3}=a+c x^{2}+b\left(x-x^{3}\right)=a p_{1}+c p_{2}+(-b) p_{3}
\end{gathered}
$$

So $p \in V$.

