Quiz \#2: $2 / 2$
MATH 110
Section 118: 9:10-10:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Is the set $W=\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) \cdot f(-1)=0\}$ a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$? Justify your answer.

Solution: It is not. For example, $f(x)=1+x \in W$ since $f(1) \cdot f(-1)=2 \cdot 0=0$, and $g(x)=1-x \in W$ since $g(1) \cdot g(-1)=0 \cdot 2=0$ but $(f+g)(x)=(1+x)+(1-x)=2$ is not in W. So W is not closed under addition.
2. (5 pts) Let $S=\{(1,-1,0),(0,1,-1),(1,0,-1)\}$. Show that the span of S equals $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.

Solution: Let $V=\operatorname{span}(S)$, and $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$. Need to show:
$\mathbf{V} \subseteq \mathbf{W}:$

Let $\vec{x}=(x, y, z) \in V$. Then $\vec{x}=a(1,-1,0)+b(0,1,-1)+c(1,0,-1)=(a+c,-a+b,-b-c)$ for some $a, b, c \in \mathbb{R}$. So $x+y+z=(a+c)+(-a+b)+(-b-c)=0$, so $\vec{x} \in W$.
$\mathbf{W} \subseteq \mathbf{V}:$

Let $\vec{x}=(x, y, z) \in W$. Then $x+y+z=0$, so $z=-x-y$. We want to find a, b, c such that $a(1,-1,0)+b(0,1,-1)+c(1,0,-1)=(a+c,-a+b,-b-c)$

$$
\begin{gathered}
a+c=x \\
-a+b=y \\
-b-c=-x-y
\end{gathered}
$$

This system has a solution:

$$
\begin{aligned}
a & =0 \\
b & =y \\
c & =x
\end{aligned}
$$

(This is not the only solution, but it is a solution). So $\vec{x} \in W$.

