Quiz #2: 2/2 MATH 110 Section 118: 9:10 - 10:00 GSI: Alex Zorn

Name:

You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Is the set $W = \{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) \cdot f(-1) = 0\}$ a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$? Justify your answer.

Solution: It is not. For example, $f(x) = 1 + x \in W$ since $f(1) \cdot f(-1) = 2 \cdot 0 = 0$, and $g(x) = 1 - x \in W$ since $g(1) \cdot g(-1) = 0 \cdot 2 = 0$ but (f + g)(x) = (1 + x) + (1 - x) = 2 is not in W. So W is not closed under addition.

2. (5 pts) Let $S = \{(1, -1, 0), (0, 1, -1), (1, 0, -1)\}$. Show that the span of S equals $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$.

Solution: Let $V = \operatorname{span}(S)$, and $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$. Need to show: $\mathbf{V} \subseteq \mathbf{W}$:

Let $\vec{x} = (x, y, z) \in V$. Then $\vec{x} = a(1, -1, 0) + b(0, 1, -1) + c(1, 0, -1) = (a + c, -a + b, -b - c)$ for some $a, b, c \in \mathbb{R}$. So x + y + z = (a + c) + (-a + b) + (-b - c) = 0, so $\vec{x} \in W$.

 $\mathbf{W}\subseteq\mathbf{V}:$

Let $\vec{x} = (x, y, z) \in W$. Then x + y + z = 0, so z = -x - y. We want to find a, b, c such that a(1, -1, 0) + b(0, 1, -1) + c(1, 0, -1) = (a + c, -a + b, -b - c)

$$a + c = x$$
$$-a + b = y$$
$$b - c = -x - y$$

This system has a solution:

$$a = 0$$
$$b = y$$
$$c = x$$

(This is not the only solution, but it is a solution). So $\vec{x} \in W$.