Quiz \#2: $2 / 2$
MATH 110
Section 101: 8:10-9:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Is the set $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z=0\right\}$ a subspace of \mathbb{R}^{3} ? Justify your answer.

Solution: It is not. For example, $(1,0,0) \in W$ and $(0,1,1) \in W$, but $(1,0,0)+(0,1,1)=$ $(1,1,1) \notin W$, so W is not closed under addition.
2. (5 pts) The trace of a square matrix is defined to be the sum of its diagonal entries. Show that if

$$
M_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ; \quad M_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] ; \quad M_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Then the span of $\left\{M_{1}, M_{2}, M_{3}\right\}$ is the set of all 2×2 matrices whose trace equals zero.

Solution: Let $V=\operatorname{span}\left(\left\{M_{1}, M_{2}, M_{3}\right\}\right)$, and W the set of all 2×2 matrices whose trace equals zero. Need to show:
$\mathbf{V} \subseteq \mathbf{W}:$

Let $A \in V$. Then $A=a M_{1}+b M_{2}+c M_{3}$ for some $a, b, c \in \mathbb{R}$. So $A=\left[\begin{array}{cc}c & a+b \\ a-b & -c\end{array}\right] \Rightarrow \operatorname{tr}(A)=$ $c-c=0 \Rightarrow A \in W$.
$\mathbf{W} \subseteq \mathbf{V}:$

Let $A \in W$. Then $\operatorname{tr}(A)=0$, so $A=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$ for some $x, y, z \in \mathbb{R}$. We want to find a, b, c such that $A=a M_{1}+b M_{2}+c M_{3}=\left[\begin{array}{cc}c & a+b \\ a-b & -c\end{array}\right]$. So:

$$
\begin{gathered}
c=x \\
a+b=y \\
a-b=z \\
-c=-c
\end{gathered}
$$

This system has the solution:

$$
\begin{gathered}
a=\frac{y+z}{2} \\
b=\frac{y-z}{2} \\
c=x
\end{gathered}
$$

So $A \in V$.

