Quiz \#1: 1/26
MATH 110
Section 119: 10:10-11:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Let V denote the set of differentiable real-valued functions f on the real line satisfying $f^{\prime}(x)=f(x)$. Prove that V is a vector space with the usual operations of addition and scalar multiplication for functions. (You may use any facts about differentiation from calculus without proof).

Solution: The set of all real-valued functions defined on the real line is a vector space. V is a subset. Only need to show:
-Closure under addition. If f and g are in V, then:

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)=f(x)+g(x)=(f+g)(x)
$$

So $f+g$ is in V.
-Closure under scalar multiplication. If f is in V and $c \in \mathbb{R}$, then:

$$
(c f)^{\prime}(x)=c\left(f^{\prime}(x)\right)=c f(x)=(c f)(x)
$$

So $c f$ is in V.
-The set contains the zero function. Let f_{0} denote the zero function. Then $f_{0}^{\prime}(x)=0=f_{0}(x)$, so f_{0} is in V.
2. (5 pts) Let V denote the set of ordered pairs of real numbers. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are elements of V, and $c \in \mathbb{R}$, define:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right) \quad \text { and } \quad c\left(x_{1}, y_{1}\right)=\left(c x_{1}, c y_{1}\right)
$$

Show that V is not a vector space over \mathbb{R} with these operations.

Solution: This construction does not satisfy VS8- for all $a, b \in \mathbb{R}$ and $x \in V,(a+b) x=a x+b x$. Because, for example:

$$
\begin{gathered}
(1+1)(1,1)=2(1,1)=(2,2) \\
1(1,1)+1(1,1)=(1,1)+(1,1)=(1,1)
\end{gathered}
$$

