Quiz #1: 1/26 MATH 110 Section 119: 10:10 - 11:00 GSI: Alex Zorn

Name:			
-------	--	--	--

You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Let V denote the set of differentiable real-valued functions f on the real line satisfying f'(x) = f(x). Prove that V is a vector space with the usual operations of addition and scalar multiplication for functions. (You may use any facts about differentiation from calculus without proof).

Solution: The set of all real-valued functions defined on the real line is a vector space. V is a subset. Only need to show:

-Closure under addition. If f and g are in V, then:

$$(f+g)'(x) = f'(x) + g'(x) = f(x) + g(x) = (f+g)(x)$$

So f + g is in V.

-Closure under scalar multiplication. If f is in V and $c \in \mathbb{R}$, then:

$$(cf)'(x) = c(f'(x)) = cf(x) = (cf)(x)$$

So cf is in V.

-The set contains the zero function. Let f_0 denote the zero function. Then $f'_0(x) = 0 = f_0(x)$, so f_0 is in V.

2. (5 pts) Let V denote the set of ordered pairs of real numbers. If (x_1, y_1) and (x_2, y_2) are elements of V, and $c \in \mathbb{R}$, define:

$$(x_1, y_1) + (x_2, y_2) = (x_1x_2, y_1y_2)$$
 and $c(x_1, y_1) = (cx_1, cy_1)$

Show that V is not a vector space over \mathbb{R} with these operations.

Solution: This construction does not satisfy VS8- for all $a, b \in \mathbb{R}$ and $x \in V$, (a + b)x = ax + bx. Because, for example:

$$(1+1)(1,1) = 2(1,1) = (2,2)$$

 $1(1,1) + 1(1,1) = (1,1) + (1,1) = (1,1)$