Quiz \#1 Solutions: 1/26
MATH 110
Section 118: 9:10-10:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Let V denote the set of real-valued functions f on the real line satisfying $f(3)=0$. Prove that V is a vector space with the usual operations of addition and scalar multiplication for functions.

Solution: The set of all real-valued functions defined on the real line is a vector space. V is a subset. Only need to show:
-Closure under addition. If f and g are in V, then:

$$
(f+g)(3)=f(3)+g(3)=0+0=0
$$

So $f+g$ is in V.
-Closure under scalar multiplication. If f is in V and $c \in \mathbb{R}$, then:

$$
(c f)(3)=c(f(3))=c \cdot 0=0
$$

So $c f$ is in V.
-The set contains the zero function. Let f_{0} denote the zero function. Then $f_{0}(3)=0$, so f_{0} is in V.
2. (5 pts) Let V denote the set of ordered pairs of real numbers. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are elements of V, and $c \in \mathbb{R}$, define:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}, y_{1}^{2}+y_{2}^{2}\right) \quad \text { and } \quad c\left(x_{1}, y_{1}\right)=\left(c x_{1}, c y_{1}\right)
$$

Show that V is not a vector space over \mathbb{R} with these operations.

Solution: This construction does not satisfy VS7- for all $a, b \in \mathbb{R}$ and $x \in V,(a+b) x=a x+b x$. Because, for example:

$$
\begin{gathered}
(2+2)(1,1)=4(1,1)=(4,4) \\
2(1,1)+2(1,1)=(2,2)+(2,2)=\left(2^{2}+2^{2}, 2^{2}+2^{2}\right)=(8,8)
\end{gathered}
$$

