Quiz #1 Solutions: 1/26 MATH 110 Section 118: 9:10 - 10:00 GSI: Alex Zorn

Name:

You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) Let V denote the set of real-valued functions f on the real line satisfying f(3) = 0. Prove that V is a vector space with the usual operations of addition and scalar multiplication for functions.

Solution: The set of all real-valued functions defined on the real line is a vector space. V is a subset. Only need to show:

-Closure under addition. If f and g are in V, then:

(f+g)(3) = f(3) + g(3) = 0 + 0 = 0

So f + g is in V.

-Closure under scalar multiplication. If f is in V and $c \in \mathbb{R}$, then:

$$(cf)(3) = c(f(3)) = c \cdot 0 = 0$$

So cf is in V.

-The set contains the zero function. Let f_0 denote the zero function. Then $f_0(3) = 0$, so f_0 is in V.

2. (5 pts) Let V denote the set of ordered pairs of real numbers. If (x_1, y_1) and (x_2, y_2) are elements of V, and $c \in \mathbb{R}$, define:

 $(x_1, y_1) + (x_2, y_2) = (x_1^2 + x_2^2, y_1^2 + y_2^2)$ and $c(x_1, y_1) = (cx_1, cy_1)$

Show that V is not a vector space over \mathbb{R} with these operations.

Solution: This construction does not satisfy VS7- for all $a, b \in \mathbb{R}$ and $x \in V$, (a + b)x = ax + bx. Because, for example: (2 + 2)(1, 1) = 4(1, 1) = (4, 4)

$$(2+2)(1,1) = 4(1,1) = (4,4)$$
$$2(1,1) + 2(1,1) = (2,2) + (2,2) = (2^2 + 2^2, 2^2 + 2^2) = (8,8)$$