Quiz \#1 Solutions: 1/26
MATH 110
Section 101: 8:10-9:00
GSI: Alex Zorn
Name: \qquad
You have 15 minutes to complete this quiz. For full credit you must explain all your reasoning.

1. (5 pts) A real-valued function f defined on the real line is an odd function if $f(-t)=-f(t)$ for each real number t. Prove that the set of odd functions defined on the real line with the usual operations of addition and scalar multiplication for functions is a vector space.

Solution: The set of all real-valued functions defined on the real line is a vector space. This is a subset. Only need to show:
-Closure under addition. If f and g are odd functions, then:

$$
(f+g)(-t)=f(-t)+g(-t)=-f(t)-g(t)=-(f+g)(t)
$$

So $f+g$ is and odd function.
-Closure under scalar multiplication. If f is an odd function and $c \in \mathbb{R}$, then:

$$
(c f)(-t)=c(f(-t))=c(-f(t))=-c f(t)=-(c f)(t)
$$

So $c f$ is an odd function.
-The set contains the zero function. Let f_{0} denote the zero function. For any $t, f_{0}(-t)=0$, $-f_{0}(t)=-0=0$. So f_{0} is an odd function.
2. (5 pts) Let V denote the set of ordered pairs of real numbers. If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are elements of V, and $c \in \mathbb{R}$, define:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \quad \text { and } \quad c\left(x_{1}, y_{1}\right)=\left(c y_{1}, c x_{1}\right)
$$

Show that V is not a vector space over \mathbb{R} with these operations.

Solution: This construction does not satisfy VS5- for all $x \in V, 1 x=x$. Because, for example:

$$
1(0,1)=(1,0) \neq(0,1)
$$

