
Modular forms∗

Avi Zeff

The goal of these notes is to summarize the theory of modular forms. We define the
action of the modular group on the upper half-plane and modular forms as functions with
good behavior under this action (or the action of certain subgroups), and study the space of
such objects. We’ll look at particular examples given by Eisenstein series, and then study
certain operators (Hecke operators) on spaces of modular forms. Finally we’ll generalize
to “twisted” actions and give a way to check when a function built in a certain way is a
modular form, which will be useful in practice. Finally we’ll try and say something about how
modular forms are an incarnation of a more abstract notion in a simple case: automorphic
representations.

1. The modular action

We write H for the upper half-plane, i.e. the set of complex numbers with positive imaginary
part. There is an interesting action of SL2(R) on H by(

a b
c d

)
· z =

az + b

cz + d
.

The restriction to SL2(R) rather than GL2(R) is necessary: for example,(
1
−1

)
· i =

i

−1
= −i,

so the corresponding action of GL2(R) would not preserve the upper half-plane.

This action factors through PSL2(R) = SL2(R)/{±1}, since −1 =

(
−1

−1

)
acts triv-

ially on H. The latter action is faithful, which will sometimes be more convenient to work
with.

It is perhaps more natural to think about these linear fractional transformations as the
action of SL2(C) on P1(C), which we can think of as the Riemann sphere, C plus a point at
infinity. Once we fix H within P1(C), the subgroup of SL2(C) fixing H is precisely SL2(R).

The action of SL2(R) on H is transitive; indeed the action of upper triangular matrices
B is already transitive, since(√

y x/
√
y

1/
√
y

)
· i =

i
√
y + x/

√
y

1/
√
y

= x+ iy

for any real x and y > 0. If we allow all of SL2(R) to act on i, we get a stabilizer consisting
of matrices such that (

a b
c d

)
· i =

ai+ b

ci+ d
= i,

∗These notes are based on sections 1.2-1.5 of [2] and sections 2-3 of [1].
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1. THE MODULAR ACTION

i.e. ai + b = di − c, so c = −b and a = d, i.e. matrices of the form

(
a b
−b a

)
. Adding

the requirement that they have determinant 1, i.e. a2 + b2 = 1, this is exactly SO(2). This
already gives a proof that SL2(R) = B · SO(2), known as the Iwasawa decomposition for
SL2(R).

For many purposes, SL2(R) is too big, and we would like to be able to pick out discrete
subgroups. An obvious such subgroup is SL2(Z), which we will sometimes call Γ(1). For
every positive integer N , there is a canonical map SL2(Z) → SL2(Z/NZ) induced by Z →

Z/NZ; its kernel is a subgroup of SL2(Z) ⊂ SL2(R) consisting of matrices

(
a b
c d

)
such that

a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N). We call this group Γ(N); more generally, we
say that a subgroup of SL2(Z) is a congruence subgroup if it contains Γ(N) for some N .

One can check that if g =

(
a b
c d

)
, then the imaginary part of g · z is |cz + d|−2 · Im(z).

One can use this to prove the following.

Proposition 1.1. The action of Γ(1) on H is discontinuous, i.e. for every compact subset
K ⊂ H there are only finitely many g such that gK ∩K is nonempty.

Proof. Fix a compact subset K of H. Since K is closed, there is some ε > 0 such that
Im(z) > ε for every z ∈ K. Fixing some z, the pairing (c, d) 7→ |cz + d|2 is a positive-
definite quadratic form. Fix some g ∈ Γ(1), and assume that z ∈ gK ∩K, so in particular
Im(g · z) = |cz + d|−2 Im(z) > ε. On the other hand, for fixed z, as (c, d) grow |cz + d|−2

tends to 0, so this inequality can only hold for finitely many pairs (c, d).
Suppose that g1 and g2 in Γ(1) have the same bottom row (c, d). Then (keeping in mind

that det g1 = det g2 = 1)

g′ = g1g
−1
2 =

(
a1 b1

c d

)(
a2 b2

c d

)−1

=

(
1 b1a2 − a1b2

1

)

is of the form g′ =

(
1 n

1

)
for some integer n. If z, g1 · z, and g2 · z are all in K, then

g′ · g2 · z = g1z

is in K, so if we fix g2 and view g1 as g′g2 then looking for g1 is equivalent to looking for g′

which keep g2 · z in K. But since g′ is of this form it acts by translation by n, so since K is
bounded there are finitely many pairs g1, g2 keeping z in K with the same bottom row, and
we know that there are finitely many bottom rows keeping a fixed z in K from above, from
which the claim follows.

We can even find a fundamental domain for the action of Γ(1), i.e. an open subset F ⊂ H
such that for every z ∈ H, we can find g ∈ Γ(1) such that g · z ∈ F and if z1, z2 ∈ F and
g · z1 = z2 for some g ∈ Γ(1), then z1 = z2 and g = ±1. In this case we take F to be the set
of z ∈ H such that −1

2
< Re(z) < 1

2
and |z| > 1.

Proposition 1.2. The set F defined above is a fundamental domain for the action of Γ(1)
on H.
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1. THE MODULAR ACTION

Proof. For a fixed z, since |cz + d|2 is a positive-definite quadratic form it takes a minimum
value, and so Im(g · z) = |cz + d|−2 Im(z) takes a maximum value for g ∈ Γ(1); let g be a

minimizing element. By acting by

(
1 n

1

)
, we can make γ · z + n =

(
1 n

1

)
· γ · z have

real part between −1
2

and 1
2
, and the value of the imaginary part does not change, so we can

assume that γ · z has the real part as described. If it has absolute value less than 1, then

acting by

(
−1

1

)
would give it larger imaginary part, and the imaginary part is already

maximal; this shows that F satisfies one half of the definition of a fundamental domain.

For the other half, suppose that z ∈ F and g · z ∈ F . Write g =

(
a b
c d

)
. If c = 0,

then since the determinant is 1 and we work up to sign we can assume g =

(
1 b

1

)
for some

integer b, which will take z out of the fundamental domain unless b = 0, in which case it is
the identity, so in this case we’re done; therefore assume c 6= 0. The minimal imaginary part
of an element of F is at the corners ±1

2
+
√

3
2
i, which are not included in F itself, so if z and

g · z are both in F then

√
3

2
< Im(g · z) =

Im(z)

|cz + d|2
≤ 1

c2 Im(y)
<

2

c2
√

3

and so c2 ≤ 4
3
. Since c is an integer, the only possibilities are c = ±1, which by scaling by

−1 we can assume is c = 1. Since ad− bc = ad− b = 1, we have the decomposition

g =

(
a b
1 d

)
=

(
1 a

1

)(
−1

1

)(
1 d

1

)
.

Therefore

g · z = − 1

z + d
+ a.

Since |Re(z)| < 1
2
, for any integer d we have |Re(z) + d| ≥ |Re(z)| and so |z + d| ≥ |z| > 1;

the same argument applies to g · z since it is also in F , so in particular |(g · z)− a| > 1. But
then 1

|z+d| = |g · z − a| > 1 and so |z + d| < 1, a contradiction, so c 6= 0 is impossible and we
are left in the situation above.

We can describe SL2(Z) explicitly be generators: it is generated by T =

(
1 1

1

)
and

S =

(
−1

1

)
. To see this, we use the fact that F is a fundamental domain for SL2(Z): pick

z ∈ H. If it has real part greater than 1
2

or less than or equal to −1
2
, we can adjust it by

powers of T until it has real part in the correct range. If it now has absolute value less than
1, applying S sends z to −1

z
, with absolute value 1

|z| > 1. This may change the real part.

However, it now has imaginary part Im(−1/z) = Im(z)
|z|2 > Im(z), so once we adjust it back to

the right real range by powers of T it will have greater imaginary part, and if the absolute
value is still less than 1 we can repeat the process. One might worry that this could take
infinitely many steps, but since each g ∈ Γ(1) carries F to a different fundamental domain,
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2. MODULAR FORMS

which collectively cover H, given any z we can find a path of adjacent fundamental domains
going to F ; the adjacent domains to F are given by the images under S, T , and T−1, so by
homogeneity the same is true for any domain and so moving through this chain corresponds
to multiplication by these elements. One can use similar methods to find generators for other
discrete subgroups of SL2(R).

As mentioned before, it is natural to view H with the fractional linear action as living
inside P1(C) with a similar action, where its boundary is P1(R), including a point at infinity.
For a discrete subgroup Γ of SL2(R), the cusps are the points at which the closure of the
fundamental domain intersects this boundary; thus for Γ(1) there is only one cusp, at the
point at infinity. For other congruence subgroups there may also be intersections along the
real line, which are treated the same way.

Translating from the fundamental domain to the language of orbits, SL2(Z) acts transi-
tively on the rational points P1(Q), so any finite index subgroup Γ has finitely many orbits;
these orbits are the cusps of Γ, and correspond to the cusps in the above sense. This defini-
tion can be generalized to arbitrary discrete subgroups of SL2(R) acting discontinuously on
H.

For a congruence subgroup Γ, since it acts discontinuously we can form the quotient Γ\H.
Upon adding one point for each cusp of Γ, we will obtain a compact Riemann surface; we
do this by adding a point at infinity and at every rational number, topologized by open sets
given by a ball tangent to those points (i.e. |x| > C for some C for the point at infinity).
We call this completed upper half-plane H∗. Then we can equip Γ\H∗ with the quotient
topology; this is a manifold.

By specifying charts at each point, we can even give it a complex structure. For most
points, we can just take a neighborhood in H. The difficult points are the elliptic points,
i.e. points of H with a nontrivial stabilizer in Γ (after factoring through its quotient by the
trivial scalar action).

For Γ = Γ(1), the elliptic points are (the orbits of) i and ρ = e2πi/3, with stabilizers of

order 2 and 3 respectively, generated by

(
−1

1

)
and

(
−1

1 1

)
, since−1

i
= i and− 1

ρ+1
= ρ.

If a is an elliptic point, we use the Cayley transform

z 7→ z − a
z − ā

.

This carries H to the unit disk and sends a to 0, which gives a chart about a.
Finally, at the cusps, by acting by an element g of Γ(1) we can send any cusp to the

point at infinity, which is stabilized by the group generated by T n for some integer n. Thus
z 7→ e2πi(g·z)/n sends a neighborhood of a homeomorphically to a neighborhood of the identity,
giving a chart near a. All of these charts live naturally in the complex plane and so give
Γ\H∗ a complex structure, making it a compact Riemann surface.

2. Modular forms

It is natural to ask about smooth functions on the manifold Γ\H∗. Let’s start with the
simplest case, Γ = Γ(1), so we’re looking for functions on H∗ which are invariant under the
action of SL2(Z). This is equivalent to functions on H, which are easier to think about,
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2. MODULAR FORMS

satisfying the additional requirement of being holomorphic at the cusp∞. What this means
is that for any SL2(Z)-invariant function f on H, since it is invariant under the action of T
in particular it is periodic, f(z + 1) = f(z), and so has a Fourier expansion of the form

f(z) =
∞∑

n=−∞

anq
n

where q = e2πiz. If an vanishes for n < −N for N large enough, we say that f is meromorphic
at ∞; if an = 0 for n < 0, we say that it is holomorphic at infinity. We could require a
stronger condition, that a0 = 0 as well, or an = 0 for n ≤ 0; in this case we say that f is
cuspidal at ∞, or a cusp form.

Unfortunately this turns out to be a fairly trivial notion: any such function is constant.
This is because it descends to a compact manifold Γ\H∗ and so takes a maximum value, but
this is impossible for any nonconstant function by the maximum modulus principle.

It is better to look at a looser notion than Γ-invariance: we should allow functions which
under the action of Γ are not invariant but transformed in some nice way. For Γ = Γ(1) =
SL2(Z) and an integer k, we say that a function f on H transforms with weight k if for ever

g =

(
a b
c d

)
∈ Γ(1) we have

f(g · z) = (cz + d)kf(z).

Since for g = T we have cz+d = 1, such functions are still periodic with period 1 and so still
have a Fourier expansion, so we can form the same condition as above; if f transforms with
weight k under SL2(Z) and is holomorphic at ∞, we call it a modular form of weight k for
SL2(Z). We write Mk(Γ(1)) for the space of such functions. If f is further cuspidal at∞, we
call it a cusp form of weight k, and write the space of such things as Sk(Γ(1)) ⊂ Mk(Γ(1)).
Thus our previous notion corresponds to k = 0, and so we see that the space of modular
forms of weight 0 is one-dimensional, given by constant functions, and the space of cusp
forms of weight k is trivial.

To do anything with these spaces, we would first like to know that they are in fact
finite-dimensional for all k.

Proposition 2.1. For every integer k, the spaces Mk(Γ(1)) and Sk(Γ(1)) are finite-dimensional.

Proof. First, note that the claim for Sk(Γ(1)) follows from that for Mk(Γ(1)) since it is a
subspace, so we focus on general modular forms. Write X for the compactification of the
quotient Γ(1)\H described above. If Mk(Γ(1)) is trivial, we are done, so we can assume it
has some nonzero element f0. For any other function f ∈ Mk(Γ(1)), the function f/f0 is a
Γ(1)-invariant meromorphic function, with poles at the zeros of f0 of orders at most those
of the zeros. We now apply a lemma (a weaker version of Riemann-Roch).

Lemma 2.2. The space V of meromorphic functions on a compact Riemann surface holo-
morphic away from a finite set of points p1, . . . , pm and bounded in order by a set of positive
integers r1, . . . , rm has dimension at most r1 + · · ·+ rm + 1.

Proof. Choose such a meromorphic function φ ∈ V ; we can associate to it around each
pj its Laurent expansion aj,−rj

z−rj + aj,−rj+1z
−rj+1 + · · · in a local coordinate z, and keep
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2. MODULAR FORMS

track of the negative coordinates aj,−rj+s for 0 ≤ s < rj; taking all the j together gives
r = r1 + · · ·+ rm coefficients, which we bundle together as a vector A(φ). If we take N > r
linearly independent such functions φ1, . . . , φN in V , then the A(φj) cannot be linearly
independent, so we can find constants cj not all 0 such that

∑
j cjA(φj) = 0; since A is linear

in φ, this is the vector of negative-indexed Laurent coefficients of
∑

j cjφj, so in particular∑
j cjφj has no poles. But then by the maximum modulus principle it is constant, so any

subspace of V of dimension N > r contains a constant function, which is nonzero since the
φj are linearly independent in V . Since the space of constant functions is one-dimensional,
it is only possible that any subspace of V of dimension at least r + 1 contains it if there is
only one such subspace, V itself, so dimV ≤ r + 1 as desired.

Applying this lemma to X with poles bounded by the orders of the zeros of f0 (counted
with multiplicity of the stabilizer), functions f/f0 are in the vector space V for f ∈Mk(Γ(1))
and so dimMk(Γ(1)) ≤ dimV which is finite by the lemma.

This gives us a finiteness result: the space of modular forms is not infinite-dimensional
(at least when graded by weight). We’d like to have a result in the other direction: are there
actually any nontrivial modular forms at all?

The answer is yes. For even integers k ≥ 4, we can define

Ek(z) =
1

2

∑
(m,n)∈Z2\{(0,0)}

(mz + n)−k.

This is absolutely convergent, and some series rearrangements show that its Fourier expan-
sion is given by

Ek(z) = ζ(k) +
(2π)k(−1)k/2

(k − 1)!

∞∑
n=1

σk−1(n)qn,

where q = e2πiz and σr(n) =
∑

d|n d
r. Sometimes we normalize this by dividing by ζ(k); we

call the result Gk(z), and note that all of the Fourier coefficients are rational in that case.
We will often restrict to even k. In that case we’ve shown that Mk(Γ(1)) has dimension

at least 1 for k ≥ 4. Indeed, we’ve displayed an element Gk(z) with constant term equal to 1,
so dimMk(Γ(1))− dimSk(Γ(1)) ≥ 1; in fact this difference is equal to 1, since given another
f ∈Mk(Γ(1)) with constant term 1 we have f −Gk a cusp form, so the space orthogonal to
cusp forms has dimension at most 1 and thus equal to 1 when k ≥ 4.

This leaves the question of whether there are any cusp forms. The answer is again yes, at
least in suitable weights: modular forms form a graded ring M∗(Γ(1)), and one can compute
for example

G4(z) = 1 + 240
∞∑
n=1

σ3(n)qn, G6(z) = 1− 504
∞∑
n=1

σ5(n)qn,

so we can combine these to find a nontrivial cusp form of weight 12:

G4(z)3 −G6(z)2

1728
= q − 24q2 + 252q3 − 1472q4 + 4830q5 + · · · .
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2. MODULAR FORMS

By manipulating Jacobi’s triple product formula, we can obtain another cusp form of weight
12, given by the formula

∆(z) := q

∞∏
n=1

(1− qn)24.

This is a convergent product of nonzero functions on H and so is nonzero.

Proposition 2.3. The space S12(Γ(1)) is one-dimensional, spanned by ∆.

In particular it follows that ∆ is equal to
G3

4−G2
6

1728
up to a scalar, and inspecting Fourier

coefficients reveals that this scalar is 1.

Proof. Let f be a cusp form of weight 12. Since ∆ is nonvanishing on H, f/∆ is holomorphic
on H; at the cusp, ∆ has a zero of order 1, and f also has a zero of some positive order by
virtue of being a cusp form so it is holomorphic on all of H∗, and it is weight 0 and therefore
constant by the arguments above.

For general discrete subgroups, one can compute the dimensions of the spaces of modular
forms via the Riemann-Roch formula and the Selberg trace formula. For the case of Γ(1),
we can compute the dimensions in general using simpler tools.

Proposition 2.4. Let k be an even nonnegative integer, and write k = 12j+r for 0 ≤ r ≤ 10
(since r is also even). Then dimM12j+r(Γ(1)) is j + 1 if r ∈ {0, 4, 6, 8, 10} and j if r = 2.

We can compute the dimensions of the cuspidal spaces from here as one less than the
dimension of the corresponding space of modular forms (when it is nonzero).

Proof. First, suppose that k < 12, i.e. j = 0. We’ve already seen that dimM0(Γ(1)) = 1; in
the cases k ∈ {4, 6, 8, 10}, we know that the dimension is at least 1, so it remains to show
it is at most 1, i.e. there are no nonzero cusp forms. Let f ∈ Mk(Γ(1)) be a cusp form.
Then E12−kf/∆ is a modular form of weight 0 for k ≤ 8, and so constant; in particular
if f is nontrivial then E12−k has no zeros. The same goes for E(12−k)mf

m/∆m, so E(12−k)m

has no zeros and up to a scalar fm = ∆m/E(12−k)m is a holomorphic function (this now
works for k = 10 as well). To get something of weight 0, we multiply by some ∆r such that
12(r + m) = (12 − k)m, so r = −mk/12; then ∆m+r/E(12−k)m is holomorphic of weight 0
and so constant; but it is a multiple of fm and so has a zero at infinity, so it is everywhere
0, a contradiction since ∆ is nonzero.

Next, we want to show that M2(Γ(1)) is trivial. Suppose that f is a nonzero modular
form of weight 2. Then fE4 is a nonzero modular form of weight 6, so it is a nonzero scalar
multiple of E6; one can check that E4(ρ) = 0, where ρ = e2πi/3 as above, so E6(ρ) = 0 and
therefore ∆(ρ) = 0, but ∆ is nonvanishing on H, a contradiction.

Finally, suppose k ≥ 12. Then multiplication by ∆ gives an injection Mk−12(Γ(1)) →
Sk(Γ(1)), and if f ∈ Sk(Γ(1)) then f/∆ is holomorphic and so lies in Mk−12(Γ(1)), i.e. this
map is also surjective and so dimSk(Γ(1)) = dimMk−12(Γ(1)). The formula follows from the
fact that the cusp forms are a codimension 1 subspace.

Corollary 2.5. The ring of modular forms is generated by G4 and G6.
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2. MODULAR FORMS

Proof. Let R be the subring generated by G4 and G6. Since M4, M6, M8, and M10 are one-
dimensional, their elements are all scalar multiples of G4, G6, G2

4, and G4G6 respectively,
so Rk = Mk for k ≤ 10. We know from Proposition 2.3 that ∆ is generated by G4 and
G6, so if f is a cusp form of weight k then f/∆ is a modular form of weight k − 12, which
we can assume by induction is in R, so f is also in R; and up to a scalar there is only one
non-cuspidal form, which is given by Ea

4E
b
6 for a, b such that 4a+ 6b = k, possible for every

even k ≥ 4 since gcd(4, 6) = 2.

Suppose that f and g are cusp forms of weight k. Then f(z)g(z) Im(z)k is invariant under

the action of Γ(1): replacing z by γz, where γ =

(
a b
c d

)
, gives

f(γz)g(γz) Im(γz)k = (cz + d)k(cz + d)k|cz + d|−2kf(z)g(z) Im(z)k = f(z)g(z)=(z)k.

Therefore it descends to the quotient and so it makes sense to define

〈f, g〉 =

∫
Γ(1)\H

f(z)g(z) Im(z)kDz

where Dz is the invariant measure under the action of SL2(R), sometimes written dx dy
y2

where

z = x+iy. This is the Petersson inner product on Sk(Γ(1)); the integral is rapidly convergent
by the properties of cusp forms, and gives a positive-definite Hermitian inner product.

To any modular form

f(z) =
∞∑
n=0

anq
n,

we can associate an L-function

L(s, f) =
∞∑
n=1

ann
−s.

We would like it to converge for Re(s) sufficiently large. To prove this, we use the following
estimate.

Proposition 2.6. If f is a cusp form of weight k, then its Fourier coefficients an satisfy
|an| ≤ Cnk/2 for some constant C independent of n.

This is the “trivial estimate,” due to Hardy and Hecke; a better bound is Cn(k−1)/2+ε for
any ε > 0, conjectured by Ramanujan (for f = ∆) and Petersson (in general) and finally
proven by Deligne, using the Weil conjectures.

Proof. After taking absolute values, |f(z) Im(z)k/2| is Γ(1)-invariant as above, and since f is
cuspidal it is bounded over all z ∈ H. We can obtain the Fourier coefficients by integrating:
for any fixed y > 0,∫ 1

0

f(x+ iy)e−2πinx dx =
∞∑
m=1

am

∫ 1

0

e2πim(x+iy)e−2πinx dx = ane
−2πny,

so

|an| ≤
∫ 1

0

|f(x+ iy)| dx ≤ Ce2πnyy−k/2

since f(z) Im(z)k/2 is bounded. Taking y = 1
n

gives the claimed bound.
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2. MODULAR FORMS

Note that this bound is only valid when f is a cusp form. However, another bound of a
similar type is possible for Eisenstein series: the nth Fourier coefficient of Ek is O(σk−1(n)) =
O(nk−1 log n). In either case the L-function is convergent for Re(s) sufficiently large.

Proposition 2.7. Let f be a modular form of weight k. Then L(s, f) has meromorphic
continuation to the complex plane; if

Λ(s, f) = (2π)−sΓ(s)L(s, f),

then
Λ(s, f) = (−1)k/2Λ(k − s, f),

and if f is a cusp form Λ(s, f) is holomorphic; otherwise it has simple poles at s = 0 and
s = k.

Proof. First, assume that f is a cusp form. Let z = iy for y real. The action of S =

(
−1

1

)
is by

f(−1/(iy)) = f(i/y) = zkf(iy) = (−1)k/2ykf(iy),

so as y →∞ since f is cuspidal the right-hand side goes to 0 rapidly, so so does the left-hand
side, i.e. f(iy) goes rapidly to 0 as y → 0 as well. Therefore the integral∫ ∞

0

f(iy)ys
dy

y

converges and gives an analytic function of s. Substituting the Fourier expansion of f , for
Re(s) sufficiently large we can exchange the summation and integration to get

∞∑
n=1

an

∫ ∞
0

e−2πnyys
dy

y
,

and substituting u = 2πny this is

∞∑
n=1

an(2πn)−s
∫ ∞

0

e−uus
du

u
= (2π)−sΓ(s)L(s, f) = Λ(s, f).

On the other hand, using the modular properties of f above and substituting 1/y for y gives
for the same integral∫ ∞

0

f(i/y)y−s
dy

y
=

∫ ∞
0

(−1)k/2yk−sf(iy)
dy

y
= (−1)k/2Λ(s, f)

by the above, so the functional equation follows. By standard L-function methods Propo-
sition 2.6 shows that L(s, f), and therefore Λ(s, f), converges for Re(s) > 1 + k

2
, and so

Λ(k − s, f) is holomorphic for s < k
2
− 1 and so the functional equation gives an extension

of Λ(s, f) to a holomorphic function on the whole plane.
Since L(s,−) and Λ(s,−) are linear in f , to conclude the result for all modular forms it

suffices to prove it for Eisenstein series. In this case f(iy) does not go to 0 as y → ∞ or

9



3. HECKE OPERATORS

y → 0, but is only bounded, and the integral does not converge. Instead, we compute the

L-function directly: we know that for n ≥ 1 the nth Fourier coefficient is (2π)k(−1)k/2

(k−1)!
σk−1(n),

so

L(s, Ek) =
(2π)k(−1)k/2

(k − 1)!

∞∑
n=1

σk−1(n)n−s.

By Dirichlet convolution it is not hard to see that

∞∑
n=1

σk−1(n)n−s = ζ(s)ζ(s− k + 1).

Thus

Λ(s, Ek) =
(2π)k−s(−1)k/2

(k − 1)!
Γ(s)ζ(s)ζ(s− k + 1).

Recall that the completed Riemann zeta function is

Λ(s) = π−s/2Γ(s/2)ζ(s),

so

Λ(s, Ek) =
2k−sπ(k+1)/2Γ(s)

Γ( s
2
)Γ( s−k+1

2
)

Λ(s)Λ(s− k + 1).

Therefore

Λ(k − s, Ek) =
2sπ(k+1)/2Γ(k − s)

Γ(k−s
2

)Γ(1−s
2

)
Λ(k − s)Λ(1− s).

Since Λ(s) satisfies the functional equation Λ(1− s) = Λ(s), this is

2sπ(k+1)/2Γ(k − s)
Γ(k−s

2
)Γ(1−s

2
)

Λ(s− k + 1)Λ(s),

so it suffices to check that

2sΓ(k − s)
Γ(k−s

2
)Γ(1−s

2
)

=
2k−sΓ(s)

Γ( s
2
)Γ( s−k+1

2
)
,

which we can verify using the reflection formula.

Thus these L-functions have many of the properties of arithmetic L-functions, such as
Dirichlet L-functions; this is not a coincidence. Another property we would like to see is an
Euler product expansion; to get one, we need the theory of Hecke operators.

3. Hecke operators

To define Hecke operators, it is convenient to enlarge the groups we are considering. We
can extend the action on H from SL2(R) to the subgroup GL2(R)+ ⊂ GL2(R) given by
the connected component with positive determinant; this still preserves H, though some
formulas become messier. Of course, this still factors through PGL2(R)+ ' PSL2(R), so it is

10



3. HECKE OPERATORS

essentially the same action on H. However, the induced action on functions is more general:

for f a holomorphic function on H, γ =

(
a b
c d

)
∈ GL2(R)+, and k a fixed weight, which we

now allow to be either even or odd, define a new function f |γ by

(f |γ)(z) = (det γ)k/2(cz + d)−kf(γz).

One can check that this gives a genuine right action of GL2(R)+ on the space of holomorphic

functions on H. If k is even, then scalar matrices

(
λ

λ

)
act trivially as expected; if k is

odd, though, they act by sign(λ). Observe that f transforms with weight k under a group
Γ ⊂ SL2(R) if and only if Γ fixes f under this action.

We can now generalize the definition of modular forms. Let Γ be a subgroup of SL2(R)
acting discontinuously on H such that Γ\H has finite volume, such as a congruence subgroup
of Γ(1). Then a holomorphic function f on H is a modular form of weight k for Γ if Γ fixes f
under the above action and f is holomorphic at the cusps of Γ\H. To make this precise, we
can use the same notion as for SL2(Z) for the cusp at ∞ (except that now the period may
be some integer t greater than 1); for the other cusps, let g ∈ Γ be an element taking the
cusp to ∞. Then f |g−1 has a Fourier expansion

∑
n ag,ne

2πinz/t and we can make the usual
definitions.

Note that if −1 ∈ Γ, then there are no nonzero modular forms of odd weight for Γ:

f(z) = (f | − 1)(z) = (−1)−kf(z) = −f(z)

for all z, so f = 0. Since we want to focus primarily on SL2(Z), which contains −1, we’ll
assume that k is even.

Proposition 3.1. For every α ∈ GL2(Q)+, the double coset Γ(1)αΓ(1) is a finite union of
right cosets

Γ(1)αΓ(1) =
N⋃
i=1

Γ(1)αi

for αi ∈ GL2(Q)+, with N = [Γ(1) : α−1Γ(1)α ∩ Γ(1)].

Proof. It is easy to check that conjugates of congruence subgroups are congruence subgroups,
so α−1Γ(1)α ∩ Γ(1) is a congruence subgroup of Γ(1) and so has finite index in it. Right
multiplication by α−1 gives a bijection of GL2(Q)+ with itself, and applying this to the set of
cosets Γ(1)\Γ(1)αΓ(1) gives a bijection to Γ(1)\Γ(1)(αΓ(1)α−1). By the second isomorphism
theorem, this is isomorphic to (Γ(1) ∩ αΓ(1)α−1)\αΓ(1)α−1. Multiplying on the left by
α−1 and on the right by α is a further bijection carrying this to (α−1Γ(1)α ∩ Γ(1))\Γ(1),
and so taking cardinalities all around we conclude that the number of right cosets in the
decomposition of the proposition is equal to the index claimed.

Given any α ∈ GL2(Q)+, by Proposition 3.1 we can find α1, . . . , αN with N as described
giving a decomposition of Γ(1)αΓ(1) into right cosets. We define an operator Tα on Mk(Γ(1))
by

f |Tα =
N∑
i=1

f |αi.

11



3. HECKE OPERATORS

This appears to depend on the choice of the representatives αi, but each is well-defined up
to an element of Γ(1), and since f is modular it is fixed by the action of Γ(1). Moreover the
action of γ ∈ Γ(1) on the right does not change Γ(1)αΓ(1) and so only permutes the αi, so
f |Tα is still modular. The subspace of cusp forms is invariant under this action.

To see how these operators compose, choose another β ∈ GL2(R)+, with corresponding
βi. Then

f |TαTβ =
∑
i,j

f |αiβj =
∑

σ∈Γ(1)\GL2(Q)+

m(α, β;σ)f |σ

where m(α, β;σ) is the number of pairs of indices (i, j) such that σ ∈ Γ(1)αiβj. Multiplying
σ by an element of Γ(1) on the right does not change this number, so we can write this as

f |TαTβ =
∑

σ∈Γ(1)\GL2(Q)+/Γ(1)

m(α, β;σ)|Tσ.

This motivates the following definition: let R be the free abelian group generated by Tα for
α representatives for Γ(1)\GL2(Q)+/Γ(1). We equip R with a multiplication making it into
a ring by

Tα · Tβ =
∑

σ∈Γ(1)\GL2(Q)+/Γ(1)

m(α, β;σ)Tσ,

i.e. such that f |Tα · Tβ = (f |Tα)|Tβ. Thus R acts on Mk(Γ(1)), and is called the Hecke
algebra.

Proposition 3.2. A complete set of representatives for Γ(1)\GL2(Q)+/Γ(1) is given by the

diagonal matrices

(
d1

d2

)
with d1 and d2 rational numbers such that d1/d2 is a positive

integer.

Proof. For each α ∈ GL2(Q)+, choose an integer N large enough that Nα has integer
coefficients. We need to apply an algebraic fact, the elementary divisor theorem, which
states that if R is a principle ideal domain, Λ1 is a free R-module of rank n, and Λ2 ⊂ Λ1 a
free R-submodule also of rank n, then there is a basis ξ1, . . . , ξn of Λ1 and nonzero elements
D1, . . . , Dn of R such that Di+1|Di for 1 ≤ i < n and D1ξ1, . . . , Dnξn is a basis of Λ2. In our
case, if R = Z, Λ1 = Z2, and Λ2 is the sublattice spanned by the rows of Nα, we see that
there is a basis ξ1, ξ2 of Z2 and integers D1, D2 such that D2|D1 and D1ξ1, D2ξ2 is a basis
of Λ2; by flipping the signs as necessary, we can assume that D1 and D2 are positive and
the matrix ξ whose rows are ξ1 and ξ2 has determinant 1. This is therefore an element of

SL2(Z), and

(
D1

D2

)
ξ gives a matrix whose rows span the same lattice as Nα and so is a

change of basis away, i.e. there is some γ ∈ GL2(Z) such that γNα =

(
D1

D2

)
ξ. Taking

determinants, we find that det γ > 0 and so γ ∈ SL2(Z), and so

α = γ−1

(
D1/N

D2/N

)
ξ

gives the desired decomposition, with (D1/N)/(D2/N) = D1/D2 an integer since D2 divides
D1.

12



3. HECKE OPERATORS

This process shows that not only can we find a diagonal matrix in the coset of α, but it is
actually unique. In particular, we can recover D1 as the greatest common divisor of entries
of Nα, and D2 as N2

D1
detα.

Proposition 3.3. For any α ∈ GL2(Q)+, we have Γ(1)αΓ(1) = Γ(1)αTΓ(1).

Proof. By Proposition 3.2, we can find a representative that is diagonal and therefore sym-
metric, so its transpose gives the same coset, which is stable under transposition.

Proposition 3.4. We can choose the representatives αi for the decomposition from Propo-
sition 3.1 such that

Γ(1)αΓ(1) =
N⋃
i=1

αiΓ(1)

also holds.

Proof. By Proposition 3.3, the double coset is stable under transposition, so

Γ(1)αΓ(1) =
n⋃
i=1

αT
i Γ(1).

Since αi and αT
i generate the same double coset, there is some gi ∈ Γ(1) such that αT

i giα
−1 ∈

Γ(1). Then αT
i gi is equal to hiαi for some h ∈ Γ(1), and so they give a set of representatives

with the desired property:

N⋃
i=1

αT
i giΓ(1) =

N⋃
i=1

Γ(1)αi = Γ(1)αΓ(1),

and work for the original decomposition as well:

N⋃
i=1

Γ(1)αT
i gi =

N⋃
i=1

Γ(1)hiαi =
N⋃
i=1

Γ(1)αi = Γ(1)αΓ(1).

Theorem 3.5. The Hecke algebra R is commutative.

The idea is that transposition induces an antiautomorphism of R, which by Proposi-
tion 3.3 is really the identity, so in order for this to be an antiautomorphism R must be
commutative.

Proof. We proceed by showing that the structure constantsm(α, β;σ) are actually symmetric
in α and β. Write Γ(1)σΓ(1) =

⋃
l Γ(1)σl. Then σ ∈ Γ(1)αiβj if and only if some σl is in

Γ(1)αiβj, and so∑
l

m(α, β;σl) =
∑
l

m(α, β;σ) = m(α, β;σ) · |Γ(1)\Γ(1)σΓ(1)|.

13



3. HECKE OPERATORS

Choose representatives αi and βi as in Proposition 3.4, so that

Γ(1)αΓ(1) =
⋃
i

Γ(1)αi =
⋃
i

αiΓ(1) =
⋃
i

Γ(1)αT
i

and
Γ(1)βΓ(1) =

⋃
i

Γ(1)βi =
⋃
i

βiΓ(1) =
⋃
i

Γ(1)βT
i .

Then

m(α, β;σ) · |Γ(1)\Γ(1)σΓ(1)| = |{(i, j)|σ ∈ Γ(1)αiβjΓ(1)}|
= |{(i, j)|σ ∈ Γ(1)αT

i β
T
j Γ(1)}|

|{(i, j)|σT ∈ Γ(1)βjαiΓ(1)}|
= m(β, α;σT) · |Γ(1)\Γ(1)σTΓ(1)|.

We can choose the representative σ such that σT = σ, so m(α, β;σ) = m(β, α;σ), and so
the multiplication in R is commutative.

This means we can dismiss with the awkward f |Tα notation and instead write Tαf .
We extend the Petersson inner product to cusp forms for any congruence subgroup by

picking N such that f and g are both modular forms for Γ(N) and setting

〈f, g〉 =
1

[Γ(1) : Γ(N)]

∫
Γ(N)\H

f(z)g(z) Im(z)kDz

with Dz the invariant measure as before.

Theorem 3.6. The Hecke operators on Sk(Γ(1)) are self-adjoint with respect to the Petersson
inner product, i.e. 〈Tαf, g〉 = 〈f, Tαg〉.

Proof. It can be checked that by replacing z with α−1z in the integral we get

〈f |α, g〉 =
〈
f, g|α−1

〉
.

The expression on the left is invariant under replacing α by γα for γ ∈ Γ(1), and similarly
the expression on the right is invariant under replacing α by αγ; thus both sides depend
only on the coset of α in Γ(1)\GL2(Q)+/Γ(1), which contains all of the αi of Proposition
3.4. Therefore

〈Tαf, g〉 =
∑
〈f |αi, g〉 = 〈f |α, g〉 · |Γ(1)\Γ(1)αΓ(1)| =

〈
f, g|α−1

〉
· |Γ(1)\Γ(1)αΓ(1)|.

By Proposition 3.3, this is the same thing as〈
f, g|α−T

〉
· |Γ(1)\Γ(1)αΓ(1)|.

We can check that α−T detα = SαS−1, so because scalars act trivially and S ∈ Γ(1) this is

〈f, g|α〉 |Γ(1)\Γ(1)αΓ(1)|,

which by the same argument as above is 〈f, Tαg〉.
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For any commutative algebra of self-adjoint operators on a finite-dimensional vector space
we can find a basis of eigenvectors, in this case eigenfunctions in Sk(Γ(1)), i.e. nonzero cusp
forms f which are eigenfunctions for every Hecke operator. In this case we say that f is a
Hecke eigenform; since these form a basis we can often restrict attention to them, and for
certain purposes they are much better-behaved. In particular, the L-function of a normalized
Hecke eigenform has an Euler product expansion.

First, we need to associate Hecke operators to integers. We do this by taking all diagonal
matrices diag(d1, d2) with d1, d2 integers such that d2|d1 and d1d2 = n; by Proposition 3.2
these are the cosets corresponding of the set ∆n of integer matrices with determinant n.
If we sum over the Hecke operators corresponding to all such matrices (of which there are
finitely many), we call the result T (n).

One can make these explicit: ∆n decomposes as the right cosets Γ(1)

(
a b

d

)
for a, d > 0,

ad = n, and b ranging over any set of representatives of congruence classes modulo d. Thus
T (n) can be viewed as the sum of the Hecke operators for these matrices, which act by(

f

∣∣∣∣ (a b
d

))
(z) = (ad)k/2d−kf

(
az + b

d

)
=
(a
d

)k/2
f

(
az + b

d

)
.

Suppose that f has Fourier expansion
∑

n anq
n. We’d like to understand the Fourier

expansion
∑

n bnq
n of T (n)f . For notational convenience, we write an and bn even for n

rational rather than integral, by setting them to be 0 whenever n is not an integer, and write
e(z) for e2πiz. Then

(T (n)f)(z) =
∑
a,d>0
ad=n

d−1∑
b=0

(a
d

)k/2
f

(
az + b

d

)

=
∑
a,d>0
ad=n

d−1∑
b=0

(a
d

)k/2 ∞∑
m=1

ame
(amz

d

)
e

(
mb

d

)

=
∞∑
m=1

am
∑
a,d>0
ad=n

(a
d

)k/2
e
(amz

d

) d−1∑
b=0

e

(
mb

d

)
.

The innermost sum vanishes unless d|m, in which case it is d, so this is

∞∑
m=1

am
∑
a,d>0
ad=n
d|m

(a
d

)k/2
de
(amz

d

)
.

On the other hand by definition

(T (n)f)(z) =
∞∑
l=1

ble(lz),
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so comparing the corresponding terms, so l = a
m
d, we get

bl =
∑
a,d>0
ad=n
a|l

(a
d

)k/2
dadl/a.

Now suppose that f is a Hecke eigenform; we normalize the eigenvalues by nk/2−1T (n)f =
λ(n)f .

Proposition 3.7. Let f be a Hecke eigenform with λ(n) as above and Fourier coefficients
an. Then a1 6= 0, and if we normalize f such that a1 = 1, then an = λ(n) for every n and
amn = aman if gcd(m,n) = 1.

Proof. By the discussion above together with the fact that f is a Hecke eigenform, we have

n1−k/2λ(n)am =
∑
a,d>0
ad=n
a|m

(a
d

)k/2
dadm/a.

Suppose that gcd(m,n) = 1. Then if a|m and a|n then a = 1, so the only term in the sum
is a = 1 and d = n, so it is just n1−k/2anm, i.e.

λ(n)am = anm.

For m = 1, we always have gcd(m,n) = 1, and so λ(n)a1 = an, so a1 cannot be zero since
otherwise f is everywhere zero, and it follows that if a1 = 1 then λ(n) = an for all n.
Therefore we have

anam = anm

for gcd(n,m) = 1.

Thus it is most natural to normalize Hecke eigenforms such that a1 = 1; we call such an
eigenform normalized. In particular Sk(Γ(1)) has a basis of normalized eigenforms.

Theorem 3.8. Let f be a normalized Hecke eigenform. Then its L-function has an Euler
product

L(s, f) =
∞∑
n=1

ann
−s =

∏
p

1

1− app−s + pk−1−2s
.

Proof. By the multiplicativity of the coefficients and general L-function theory (essentially
the fundamental theorem of arithmetic), we have an expansion

L(s, f) =
∞∑
n=1

ann
−s =

∏
p

(
∞∑
r=0

aprp−rs

)
.

We have from the formula for the Fourier expansion of eigenforms

p1−k/2λ(p)apr =
∑
a,d>0
ad=p
a|pr

(a
d

)k/2
dadpr/a.
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There are only two possibilities for ad = p, namely a = 1 and d = p or a = p and d = 1, so
the right-hand side is

p1−k/2apr+1 + pk/2apr−1 ,

and since λ(p) = ap we have

apr+1 − apapr + pk−1apr−1 = 0.

One can obtain from this recursion

∞∑
r=0

aprxr =
1

1− apx+ pk−1x2
,

and setting x = p−s gives the desired identity.

It is also possible to find a theory of Hecke operators for congruence subgroups, in more
or less similar ways.

4. Twisting and a converse theorem

We have seen that the L-function of a normalized eigenform of weight k has analytic con-
tinuation to all of C, a functional equation relating its values at s and k − s, and an Euler
product. There is a sense in which the converse is true.

Proposition 4.1. Let a = an be a sequence of complex numbers with |an| = O(nK) for some
sufficiently large real number K, and let

L(s, a) =
∞∑
n=1

ann
−s.

Suppose that Λ(s, a) = (2π)−sΓ(s)L(s, a) has analytic continuation to all of C, is bounded in
vertical strips σ1 ≤ Re(s) ≤ σ2, and satisfies Λ(s, a) = Λ(k − s, a). Then

f(z) =
∞∑
n=1

anq
n

is a cusp form of weight k. If

L(s, a) = L(s, f) =
∏
p

1

1− app−s + pk−1−2s
,

then f is a Hecke eigenform.

The condition on being bounded in vertical strips is a technical one we skipped earlier,
but holds for L(s, f).

Since f is defined by a Fourier expansion, it is T -invariant, so the main thing is to study
its behavior under the action of S; this is done by applying Mellin inversion (with the help
of the Phragmén-Lindelöf principle) to study f from Λ(s, f), which is essentially its Mellin
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transform. The assertion about the Euler product follows from inverting the reasoning in
the proof of Theorem 3.8.

However, in general Proposition 4.1 is too specialized to be terribly useful. To get some-
thing more powerful, we need to broaden our definition of modular forms again. A useful con-
gruence subgroup is Γ0(N), the preimage of the upper triangular matrices along Z→ Z/NZ,

i.e. matrices

(
a b
c d

)
with c ≡ 0 (mod N). We study a generalization of modular forms for

Γ0(N): instead of requiring that f |γ = f for γ ∈ Γ0(N), we instead require that f |γ = χ(d)f

for γ =

(
a b
c d

)
∈ Γ0(N), where χ is a Dirichlet character modulo N . We write the space of

forms of this type as Mk(Γ0(N), χ), with cuspidal subspace Sk(Γ0(N), χ). To get a nonempty
space, we require k even if ψ(−1) = 1 and k odd if ψ(−1) = −1.

Let wN =

(
−1

N

)
. This normalizes Γ0(N), and one can check that if f ∈ Sk(Γ0(N), χ)

then f |wN |γ = χ(d)f |wn, i.e. wN maps Sk(Γ0(N), χ) to Sk(Γ0(N), χ). We have

f(iy) = ikN−k/2y−k(f |wN)(i/(Ny)),

and one can use similar arguments to those appearing in the proof of Proposition 2.7 to show
that we have a functional equation

Λ(s, f) = ikN−s+k/2Λ(k − s, f |wN),

giving extensions of both Λ(s, f) and Λ(s, f |wN) to C.
More generally, suppose that ψ is another Dirichlet character with some modulus D;

assume that ψ is primitive. Write

L(s, f, ψ) =
∞∑
n=1

ψ(n)ann
−s,

with completion Λ(s, f, ψ) as usual. One can prove, by more careful work, the functional
equation

Λ(s, f, ψ) = ikψ(N)χ(D)
τ(ψ)2

D
(D2N)−s+k/2Λ(k − s, f |wN , ψ),

where

τ(ψ) =
D−1∑
a=0

ψ(a)e2πia/D.

The main result here is that a similar converse theorem to Proposition 4.1 is possible.
The proof of Proposition 4.1 relies on the fact that Γ(1) has fairly simple generators,

which we use a functional equation to govern. For more complicated congruence subgroups,
the generators are more complicated, and we need multiple functional equations.

Theorem 4.2 (Weil). Let N be a positive integer and χ be a Dirichlet character modulo N .
Let a = an and b = bn be sequences of complex numbers, both bounded by O(nK) for some

18



5. THE ASSOCIATED AUTOMORPHIC REPRESENTATION

sufficiently large real number K. For any primitive Dirichlet character ψ modulo D coprime
to N , let

L1(s, ψ) =
∞∑
n=1

ψ(n)ann
−s, L2(s, ψ) =

∞∑
n=1

ψ(n)bnn
−s,

with completions Λ1, Λ2 as usual. Suppose that for any D either 1 or a prime other than
a finite set and every primitive character ψ modulo D we have an analytic continuation of
Λ1(s, ψ) and Λ2(s, ψ) to C bounded in vertical strips and satisfying the functional equation

Λ1(s, ψ) = ikψ(N)χ(D)
τ(ψ)2

D
(D2N)−s+k/2Λ2(k − s, ψ).

Then f(z) =
∑

n anq
n is a modular form in Mk(Γ0(N), ψ), and g(z) =

∑
n bnq

n is a modular
form in Mk(Γ0(N), ψ) given by g = f |wN .

The proof uses broadly similar ideas to that of Proposition 4.1, but with much greater
care.

5. The associated automorphic representation

We finally return to the adelic setting. We are interested in representations of [GL2] =
GL2(Q)\GL2(A), or generalizations to arbitrary number fields; we will not find all such
representations here, but some turn out to come from the objects we have been studying.

Recall that SL2(R) acts transitively on H, sending i to every point of H with stabi-
lizer SO(2). Therefore we have a canonical homeomorphism SL2(R)/ SO(2) → H sending
g SO(2) 7→ g · i. Thus we can think of modular forms, Γ-invariant functions on H for some
suitable subgroup Γ ⊂ SL2(R), as functions on the quotient Γ\ SL2(R)/ SO2(R).

In the adelic setting, by strong approximation SL2(A) = GL1(A) SL2(Q) SL2(R)K for

any compact open subgroup K ⊂ SL2(Af ), where GL1 is embedded by t 7→
(
t
t−1

)
. In

particular for K = K0(N), consisting of matrices over Ẑ with c ≡ 0 (mod N), we have
Γ0(N)\ SL2(R) ' GL1(A) SL2(Q)\ SL2(A)/K0(N). (We could write this in a similar way
for GL2 or GL+

2 , essentially equivalently.) Therefore modular forms for Γ0(N) are functions
on Γ0(N)\ SL2(R)/ SO(2) ' GL1(A) SL2(Q)\ SL2(A)/K0(N) SO(2). If f ∈ Sk(Γ0(N), χ), we

can view χ as a character on Q×\A×, and can further evaluate it on K0(N) by

(
a b
c d

)
7→

χ(d). We call this character λ : K0(N)→ C×.
We want to lift f to a function on GL2(Af ). We can naturally think of it as a function

on GL2(R)+ by γ 7→ (f |γ)(i). This tells us what happens at the archimedean place; at the
nonarchimedean places we act by λ. In other words, we define a function on GL2(A) by
first using strong approximation to write γ = γ0γ∞k for γ0 ∈ GL2(Q), γ∞ ∈ GL2(R), and
k ∈ K0(N). Then we define

γ = γ0g∞k 7→ (f |γ∞)(i) · λ(k).

One has to check that this is well-defined, but it turns out to be, and defines an adelic
automorphic form for GL2(Q)\GL2(A). It generates a representation of this quotient, as
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a subrepresentation of the space of automorphic forms, which is is irreducible, admissible,
and automorphic; it factors over the places of Q, and it is possible to describe each place
explicitly as well as the action of the Hecke operators, though beyond what we have done
here.
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