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1. Lubin-Tate space

We start by trying to do explicit local class field theory. Given a p-adic field F/Qp, by local

class field theory we can describe Gal(F/F )ab as O×F × Ẑ. The fixed field of the O×F factor is
the maximal unramified extension of F , which is generated by roots of unity of order prime

to p; what about the totally ramified extension F
Ẑ
?

In the case F = Qp, this is the field generated by the pth power roots of unity, i.e. the
p-torsion in Gm. This suggests we should replace Gm by some other object G for general
p-adic fields F , carrying an action of O×F .

We can construct these objects as formal group laws. A (one-dimensional commutative)
formal group law G over a ring A is a power series G(X, Y ) ∈ A[[X, Y ]] such that G(X, Y ) =
X + Y + higher order terms, G(X, Y ) = G(Y,X) (commutativity), and G(G(X, Y ), Z) =
G(X,G(Y, Z)) (associativity). From these axioms it is possible to derive the existence of an
inverse i(X) ∈ A[[X]] with G(X, i(X)) = 0. This is analogous to addition on an abelian
group, and we write it as G(X, Y ) = X +G Y ; the simplest case is G(X, Y ) = X + Y , the
additive group law Ga. The multiplicative group law is simply X + Y +XY = (X + 1)(Y +
1)− 1. Elliptic curves also have associated formal group laws. We define a homomorphism
f : G → G ′ of formal groups to be a power series such that f(X +G Y ) = f(X) +G f(Y ), or
in other words f(G(X, Y )) = G(f(X), f(Y )).

For any natural number n, we write [n]G(X) for the n-fold application of G to X, i.e.
X +G X +G · · · +G X; this satisfies [n]G(X +G Y ) = X +G Y +G X + · · · +G X +G Y =
[n]G(X) + [n]G(Y ) by commutativity, so it is an endomorphism of G. Via i(X), we can do
the same thing for negative numbers to get a map [·]G : Z → EndG, which is just the map
coming from the fact that EndG is a (possibly noncommutative) ring and Z is initial among
rings.

More generally, for F a p-adic field and A an OF -algebra, we say that a formal group
law G over A is a formal OF -module law when it has a homomorphism [·]G : OF → EndG
extending the map from Z and such that [a]G = aX +O(X2) for a ∈ OF , where on the right
we interpret a as its image in A.

For example, the additive group law becomes a formal OF -module over any OF -algebra
A. In the case F = Qp, the multiplicative group law becomes a formal Zp-module because
for a ∈ Zp we can define [a]Gm(X) = (1 + X)a − 1. In particular multiplication by p gives
[p]Gm(X) = (1 +Xp)− 1 ≡ Xp (mod p).

Let π be a uniformizer for F , and q be the cardinality of the residue field k. It turns
out that we can define a formal OF -module over OF by choosing [π]G and constructing the
rest of G from it. Fix a power series f(X) ∈ OF [[X]] such that f(X) = πX + O(X2) and
f(X) = Xq (mod π). (Note that in the case F = Qp and π = p, [p]Gm has this property.)
Then there exists a unique formal OF -module law G over OF such that [π]G = f(X).

To see this, recall that [π]G is by definition an endomorphism of G, i.e. a power series
f(X) such that f(X +G Y ) = f(X) +G f(Y ). If we write X +G Y = X + Y + a2,0X

2 +
a1,1XY + a0,2Y

2 + · · · and f(X) = πX + b2X
2 + b3X

3 + · · · , this is

∗These notes are based on [2] and chapter 24 of [1].
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1. LUBIN-TATE SPACE

π(X + Y + a2,0X
2 + a1,1XY + a0,2Y

2 + · · · ) + b2(X2 + 2XY + Y 2 + · · · ) + · · ·
= πX + b2X

2 + πY + b2Y
2 + a2,0π

2X2 + a1,1π
2XY + a0,2π

2Y 2 + · · ·

and so collecting terms we get that for coefficients of X2 we have

a2,0π + b2 = b2 + a2,0π
2,

so a2,0 = 0, for XY we have
a1,1π + 2b2 = a1,1π

2,

so a1,1 = 2b2
π2−π (note that we assume f(X) ≡ Xq (mod π) so for q 6= 2 we always have b2

divisible by π, so this is still in OF ; if q = 2 then the numerator has a factor of 2, so it is
again in OF ), and for Y 2

a0,2π + b2 = b2 + a0,2π
2,

so a0,2 = 0. We can proceed similarly in higher degrees: the key point is that this formula
gives a unique value of each coefficient of G. Indeed, different choices of f give isomorphic
G.

Choose some f (for example, f(X) = πX +Xq works) and the corresponding G. Over a
separable closure, let G[πn] be the set of elements of the maximal ideal which are killed by
[πn]G; over k, this is just xq

n
, corresponding to qnth roots of unity, and so lifts uniquely by

Hensel’s lemma to a set G[πn] of order qn. For each n, further action of [π]G gives a surjection
G[πn]→ G[πn] with kernel G[π], of order q; each G[πn] is a free OF/πnOF -module of rank 1.
We can define an extension Fπ of F generated by the G[πn] for all n ≥ 1, and a Tate module

Tπ(G) = lim←−
n

G[πn].

This is a free OF -module of rank 1 with a continuous Galois action by Gal(Fπ/F ); Lubin
and Tate showed that this action induces an isomorphism Gal(Fπ/F )→ Aut(Tπ(G)) = O×F ,
as desired.

What we essentially did here was choose a formal group law over k = Fq, and show that
we could lift it uniquely to a formal OF -module over OF . In general, this is a bit more
complicated, but is essentially what we want to do. The first thing is to study formal group
laws over Fq: it turns out that these are classified by positive integers, called their heights.

Fix a formal group law G over Fq. Then we always have the action of integers [n]G;
in particular we can look at [p]G, where p|q. We have [p]G(X) = pX + O(X2) = O(X2)
over Fq. Differentiating G with respect to one variable, we have (∂XG)(X, Y ) = 1 + · · · ,
and in particular (∂XG)(0, Y ) = 1 + O(Y ). Now 1

(∂XG)(0,Y )
dY and f ′(Y )

(∂XG)(0,f(Y ))
are both G-

invariant differentials for any automorphism f of G, and since this space is a free Fq-module
of dimension 1 they differ by a constant, which can be determined by the difference at 0,

f ′(0)
(∂XG)(0,f(0))

. In the case f = [p]G, we have f(0) = f ′(0) = 0, so f ′(Y )
(∂XG)(0,f(Y ))

= 0 and therefore

f ′(Y ) = 0, i.e. if [p]G(X) = pX + b2X
2 + · · · then we must have every bi equal to 0 in Fq

unless i is divisible by p, i.e. [p]G factors through X 7→ Xp.
It is possible that [p]G factors through X 7→ Xph for some h > 1, i.e. [p]′G vanishes modulo

ph; in this case we say that G has height h for the maximal such h, and the above shows
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2. RAPOPORT-ZINK SPACES

that every formal group law over G has a height. If this height is infinite then G(X, Y ) is
just X + Y , i.e. G = Ga; in general by checking coefficients and using induction one can
verify that two formal group laws with the same height are isomorphic. On the other hand
the argument from before shows that we can always find a formal group law with [p]G = Xph

over Fq for any positive integer h, so the formal group laws over any finite field (or Fp) are
classified by positive integers (plus infinity). (One can also prove this result via Dieudonné
theory.) The case above is h = 1 for F = Qp, and in general h = [F : Qp].

To get formal group laws over rings such as OF , since the height is determined by the
setting there is a unique such formal group law over the residue field k, and so the problem
is just one of deforming formal group laws. This motivates the deformation problem for
formal group laws: let G0 be the unique one-dimensional formal group law of height h over
k = Fp, and let W = W (k) and K0 = W [1/p] = Q̂unr

p . If C is the category of complete
local noetherian W -algebras with residue field k, we define M0 to be the functor C → Set
sending A to the set of isomorphism (really isogeny, see below) classes of one-dimensional
formal group laws G over A together with an isomorphism G0 → G ⊗A k.

It turns out that this functor is representable by an adic ring non-canonically isomorphic
to W [[t1, . . . , th−1]], or equivalently the space Spf W [[t1, . . . , th−1]]. In particular in the case
h = 1 we get that there is a unique lift of G0 to characteristic 0. We get a universal formal
group G̃ over W [[t1, . . . , th−1]] whose special fiber is G0.

We can pass to the rigid generic fiber M0 of M0; this is the rigid open unit ball. This is
the Lubin-Tate deformation space at level 0.

Drinfeld showed how to add level structure to get a tower of moduli problems: in par-
ticular to a formal group law G over A with an isomorphism G0 → G ⊗A k, we add the data
of an isomorphism α : (Z/pnZ)⊕h → G[pn] of Z/pnZ-modules. We call the corresponding
moduli problem Mn, so that for n = 0 the additional data is trivial and we obtain M0 as
expected; Drinfeld constructed rigid spaces Mn such that for finite extensions K/K0 the
K-points of Mn classify points of Mn over K. These give étale covers Mn → M0 with
Galois group G = GLh(Z/pnZ), which together form the Lubin-Tate tower. Using Drinfeld
level structures, this can be extended to a formal model over W . At least on points (though
not as rigid spaces) one can take the limit to get a space M, which we can even think of
just as the tower, which admits right actions of GLh(Qp), the endomorphisms of G0 or more
precisely J = (EndG0 ⊗Zp Qp)

×, and the Weil group WQp ; these actions on cohomology
realize the local Langlands correspondence.

When h = 1, eachMn has dimension 0 and soM has dimension 0: every lift of G0 = Gm

is Gm, and so M just classifies level structures α : Qp
∼→ V (Gm) = Qp(1), i.e. M gives the

set Qp(1)× of nonzero elements of Qp(1). In this case G = GL1(Qp) and J = AutQp(Gm) are
both given by Q×p , though with inverse actions, and the action of the Weil group is via the
reciprocity map WQp → W ab

Qp
∼→ Q×p .

2. Rapoport-Zink spaces

We can rephrase in terms of p-divisible groups. For the application to class field theory,
we took our formal OF -module G and looked at the groups G[πn] and their limit Tπ(G). A
concrete definition is as a special kind of formal group law. First, we have to reinterpret
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2. RAPOPORT-ZINK SPACES

in a more geometric way: a formal group over A can be thought of as a group object
in the category of formal Lie varieties over A (i.e. a formal scheme locally isomorphic to
A[[X1, . . . , Xn]] for some n), after choosing a coordinate. In this case we write A(G) for
the coordinate ring of G as a formal scheme, so that each endomorphism of G induces an
endomorphism of A(G) as an A-module. In particular we can look at the endomorphism
[p]G: we say that G is p-divisible if [p]G : A(G) → A(G) makes A(G) a finite module over
itself, in which case it is locally free over itself of rank ph for some positive integer h. We
say that h is the height of the p-divisible group. More abstractly, a p-divisible group is an
inductive system of finite commutative flat p-group schemes G[pn] such that multiplication
by pn−1 has kernel G[pn−1]. It follows that we have exact sequences

0→ G[pm]→ G[pm+n]→ G[pn]→ 0,

and so if the order of G[p] is ph (as it must be for some integer h ≥ 0) then the order of G[pn]
is pnh by induction, in which case we say that G has height h.

In all the above, isomorphisms are isogenies, i.e. morphisms with finite kernel. We can
also consider quasi-isogenies, which are isogenies up to factors of 1

p
.

This framework is much more amenable to discussing higher-dimensional objects than
explicit formal group laws, but the concepts are essentially similar, and p-divisible groups
over finite fields (or Fp) are classified by their dimension d and height h. One can also
compute their deformation rings in a similar way: it is W [[t1, . . . , td(h−d)]], recovering the
deformation ring for d = 1 for one-dimensional formal groups. These can be identified with
central simple algebras over Qp by Dieudonné theory, which are classified in a similar way.

We can finally define Rapoport-Zink spaces. Let X0 be a p-divisible group over Fp, and
consider the moduli problem DefX0 , i.e. the functor sending a formal scheme S over Spf W to
the set of isomorphism classes of p-divisible groups X over S together with an isomorphism
X0 ×Fp S → X ×S S, where S = S ×Spf W SpecFp. Here isomorphisms are quasi-isogenies.

Rapoport and Zink proved that DefX0 is representable by a formal scheme MX0 over
Spf W , which is formally smooth and locally formally of finite type, and each irreducible
component of the special fiber is proper over SpecFp.

We can again take the generic fiber as an adic space, written MX0,K0 (recall K0 =
FracW ). This has a moduli interpretation: consider the functor sending complete Huber
pairs (R,R+) over (K0,W ) to the colimit over open bounded W -subalgebras R0 ⊂ R+

of DefX0(R0). If we view this as a presheaf on the opposite category, its sheafification
is represented by MX0,K0 . In other words, a section of MX0 over (R,R+) is a covering
of Spa(R,R+) by rational subsets Spa(Ri, R

+
i ) and a system of compatible (on overlaps)

deformations to open bounded W -subalgebras (Ri)0 ⊂ R+
i of X0.

This Rapoport-Zink space parametrizing deformations of p-divisible groups, or equiva-
lently p-divisible groups with fixed dimension and height, should be thought of as analogous
to Shimura varieties parametrizing abelian varieties with certain invariants (such as dimen-
sion, with height corresponding to the choice of conjugacy class of cocharacters). To get
an inverse system, we would need to add level structure; even so, we get only very simple
Shimura varieties (roughly Hilbert modular varieties). To get more, e.g. PEL, Hodge, or
abelian Shimura varieties, we need to classify more data, such as Hodge tensors.

Correspondingly, we want to generalize our moduli problem to get more general Rapoport-
Zink spaces. To know how to do this, we need to say more precisely what the problem we’re

4



2. RAPOPORT-ZINK SPACES

trying to solve is. We’ll say more about this when we discuss moduli spaces of local shtukas,
but broadly the goal is to construct local analogues of Shimura varieties, which we can then
hope have similar applications to the local Langlands program as Shimura varieties do to
the global setting. Recall from our discussion of the Langlands-Rapoport set that a (global)
Shimura datum (G,X) at each prime p we obtain an element b ∈ G(Qp) or equivalently
G(Qunr

p ), defined up to σ-conjugacy and a conjugacy class of cocharacters µ : Gm → GQp .

Each b defines a mapD → P(p)unr → EG/Qunr
p
→ G(Qunr

p ), and varying b gives a σ-equivariant
map ν from the set B(G) of σ-conjugacy classes in G(Qunr

p ) to the set N(G) of σ-invariant
conjugacy classes of morphisms D → GQunr

p
(which can be identified with σ-invariant cochar-

acters). Any cocharacter projects to an element of the fundamental group, and from there
to the σ-coinvariants; the Cartan decomposition G(Qunr

p ) =
⋃
µG(W )µ(p)G(W ) over dom-

inant weights µ (or its generalization to other p-adic fields via other uniformizers) lets us
send b ∈ G(Qunr

p ) to the µ labeling its stratum, and thence to π1(G). We call this map
KG : B(G) → π1(G). For any dominant cocharacter µ of G, we define B(G, µ) ⊂ B(G) to
be the subset of b such that ν(b) ≤ µ̄ in the sense of weights and KG(b) is the class of µ in
π1(G)σ, where µ̄ is given roughly by tracing down to the base field (say Qp for simplicity):
if G has splitting field of degree m over Qp, then

µ̄ =
1

m

m−1∑
i=0

σi(µ).

In our case, the compatibility condition is that b must be in B(G, µ−1), i.e. ν(b) ≤ µ−1 and
KG(b) = −µ. This is because otherwise the corresponding local Shimura variety will turn
out to be empty.

We also require µ to be minuscule, i.e. all its weights have multiplicity 1. This translates
to our condition that the action of Gm on Lie(GC) by ad ◦ µ has only characters of weight
−1, 0, or 1.

The Rapoport-Zink spaces are supposed to be incarnations of this notion of local Shimura
varieties. The case we considered above, where MX0 classifies deformations of a p-divisible
group X0 over Fp which is determined by its dimension d and height h, corresponds to
G = GLh and b corresponding to the map D → G giving the isocrystal of X0 determined
by Dieudonné theory. In this case µ has weight 1 on dimensions spanned by the isocrystal
in question, i.e. up to dimension d, and 0 otherwise, i.e. µ corresponds to the weight
(1, . . . , 1, 0, . . . , 0) with d occurrences of 1.

More generally, let’s consider the case of Shimura data of PEL type. In this case we have
a semisimple Q-algebra B with involution ∗, and a finite-dimensional B-module V with an
alternating pairing ψ compatible with the involution. To get local data, we simply complete
at p to get (by an abuse of notation) a semisimple Qp-algebra B with involution ∗ and a
finite-dimensional B-module V with an alternating pairing ψ compatible with the involution;
let F/Qp be the center of B, which we may as well assume is a field (after taking factors),
and G is the B-similitudes of (V, ψ) over Qp which we assume connected, with a character
c : G→ Gm defined by the similitude. This has a degree 2 subfield F0, which is the subfield
fixed by ∗.

In the local setting, we also need to fix an integral structure. First we fix a maximal
order OB ⊂ B; then let L be a chain of OB-lattices in V , i.e. a set of OB-lattices in V

5



2. RAPOPORT-ZINK SPACES

such that for any two Λ,Λ′ ∈ L either Λ ⊂ Λ′ or Λ′ ⊂ Λ, and if x ∈ B× normalizes OB
(i.e. xOBx−1 = OB) then it preserves L, i.e. xΛ ∈ L if Λ ∈ L. We further require L to be
self-dual, i.e. L is closed under duals: if Λ ∈ L then Λ∗ ∈ L, with respect to the pairing ψ.
We define the corresponding group scheme G to be the group of compatible isomorphisms of
all Λ ∈ L. To make this precise, we introduce a new notation.

For any Zp-algebra R, we say that a chain of OB ⊗Zp R-lattices of type (L) is a functor
Λ 7→ MΛ from L to OB ⊗Zp R -Mod equipped with isomorphisms θx : Mx

Λ
∼→ MxΛ for any

x ∈ B× normalizing OB, where Mx
Λ is MΛ with the OB-action conjugated by x, such that

MΛ is locally (over SpecR) isomorphic to Λ ⊗Zp R as OB ⊗Zp R-modules; M is compatible
with quotients, i.e. MΛ/MΛ′

∼= Λ/Λ′ ⊗Zp R for Λ′ ⊂ Λ adjacent (whatever that means—
finite quotient?); the isomorphisms θx are functorial, i.e. commute with the transition maps
MΛ →MΛ′ ; and for x ∈ B×∩OB normalizing OB, θx is just multiplication by x. A polarized
chain of OB⊗ZpR-lattices of type (L) is a chain MΛ of type (L) together with an isomorphism
MΛ 'M∗

Λ∗ ⊗R L of chains for some invertible R-module L.
Note that the identity functor makes L a chain of lattices of type (L) for R = Zp, with

polarization coming from ψ. We can then define G to be the automorphisms of L as a
polarized chain of lattices of type (L). This is a smooth group scheme over Zp extending
G, and for any Zp-algebra R we get a natural equivalence between G-torsors over R and the
groupoid of polarized chains of OB ⊗Zp R-lattices of type (L).

In the global setting, we’d want our Shimura variety to parametrize abelian varieties with
a B-action, polarization, and level structure. In the local case, we replace abelian varieties
by p-divisible groups and add the integral structure: we define a chain of OB-p-divisible
groups of type (L) over a Zp-algebra R on which p is nilpotent to be a functor Λ 7→ XΛ

from L to the category of p-divisible groups over R with OB-action (corresponding to formal
OB-module laws), together with an isomorphism θx : Xx

Λ
∼→ XxΛ for all x ∈ B× normalizing

OB, with Xx
Λ similarly to above XΛ with the x-conjugate action of OB, such that the θx

are functorial, for x ∈ B× ∩ OB normalizing OB the θx are just multiplication by x, and
if EXΛ is the universal vector extension of XΛ (i.e. the universal extension by Ga), then
Λ 7→ Lie(EXΛ) defines a chain of OB ⊗Zp R-modules of type (L). A polarized chain of
OB-p-divisible groups of type (L) is a chain as above together with a Zp-local system L on
SpecR and an isomorphism

XΛ
∼= X∗Λ∗ ⊗Zp L.

These have a natural notion of isogeny between them, and similarly quasi-isogeny; we con-
sider quasi-isogenies to be isomorphisms.

Finally we require an admissibility condition: a chain XΛ of OB-p-divisible groups of
type (L) over R is admissible if it satisfies a determinant condition: fix a conjugacy class of
minuscule cocharacters µ : Gm → GQp . We have the requirements that c ◦ µ : Gm → Gm

is the identity and the weights of this character on V ⊗Qp Qp are only 0 and 1, so we get
a decomposition V = V0 ⊕ V1; thus any x ∈ OB acts on both LieXΛ and V1, and the
determinant condition is that

detR(x|LieXΛ) = detQp(x|V1)

for all x ∈ OB. Note that although the right-hand side a priori only has values in Qp, by the
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2. RAPOPORT-ZINK SPACES

weight condition the action is actually defined over the reflex field E, and by integrality the
values are in OE which maps to R.

In the case we looked at above, b determined the p-divisible group X0 and µ was chosen
to be compatible with b (or equivalently X0). In the more general PEL setting the idea is
the same: b ∈ B(G) corresponds to a map D → G giving an isocrystal with B-structure.
Fixing a chain L and a maximal order OB, for each Λ ∈ L we get an integral structure and
thus a p-divisible group over Fp with an OB-action, which extends to a functor, i.e. a chain
of OB-p-divisible groups of type (L) up to quasi-isogeny, with polarization coming from the
dualization with respect to ψ. We write this chain as Xb,Λ. Fix µ such that b ∈ B(G, µ−1).

We can finally define the moduli problem in the PEL setting. Fix a datum D =
(B, V,OB,L, ψ, ∗, b, µ) as defined above. Let Ŏ be the ring of integers of W ⊗Zp F ; ev-

erything will be over this ring. The moduli problem MD over Spf Ŏ sends a p-torsion
Ŏ-algebra R to the set of polarized chains of OB-p-divisible groups XΛ of type (L) over R
which are admissible with respect to µ with quasi-isogenies

Xb,Λ ×SpecFp SpecR/p→ XΛ ×SpecR SpecR/p,

i.e. deformations of the chain Xb,Λ.
For each Λ ∈ L, we get a map MD → MXb,Λ in the sense above, deformations of the

single OB-p-divisible group Xb,Λ by forgetting the rest of the structure. Taking the product
gives a map

MD →
∏
Λ∈L

MXb,Λ .

It turns out (by results of Rapoport and Zink) that this is a closed immersion, and the
same is true taking a sufficiently large finite subset of L. In particular, each factor on the
right-hand side is representable by a formal scheme locally formally of finite type over Spf Ŏ,
and so so is MD. One can again take the generic fiber and try to understand its moduli
structure.

For example, consider the simplest situation B = Qp with trivial involution and V = Q2
p

with the standard alternating pairing ψ. In this case there is a unique maximal order OB,
namely the integers Zp whose action is automatic, and G = GSp2(V, ψ) ' GL2(Qp). The
cocharacters we consider must have weights 0 and 1, so the only possibilities are for weights
(0, 0), (1, 0), or (1, 1), i.e.

µ0(t) = 1, µ1(t) =

(
t

1

)
, µ2(t) = t

in some basis. The weight decomposition for µi gives V1 ⊂ V of dimension i, with multiplica-
tion by x ∈ OB = Zp just the scalar action, so det(x|V1) = xi, so the action on LieXΛ must
be the same for the determinant condition, i.e. dimXΛ = i. In the dimension 0 case, there
is a unique lift to characteristic 0 and so XΛ is a constant functor and in particular does not
depend on L, and so this recovers the trivial case of the above case for GL2 parametrizing
deformations of the zero-dimensional p-divisible group over Fp of height 2.

The remaining cases are more nontrivial. However, we can note that the unique p-divisible
group X0 over Fp of height 2 and dimension i has a Dieudonné module defining a Zp-lattice
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in V , which generates a canonical L, with polarization corresponding to ψ; thus we recover
the case of the deformations of X0 as a special case.

Note that the extra data of OB and L we use to define the integral structure gives rise
to the level structure: G(Zp) gives a compact open subgroup, and varying the OB and L
gives different extensions G. We could take the limit over different choices to get a tower of
Rapoport-Zink spaces.

It should be possible to do similar constructions at least for Shimura varieties of Hodge
even abelian type, but this is complicated enough for now.

3. p-adic uniformization

Remarkably, it is possible to use these local analogues of Shimura varieties to say something
in the global setting. In particular, by slightly changing the moduli problem we can get
models of Shimura varieties over W , and it is possible to describe the points of these models
in a way analogous to how we describe the C-points of Shimura varieties by a double quotient.

First, let’s define our moduli problem. We won’t go more general than the PEL setting,
though again it’s possible to generalize to Hodge and even abelian type. Let (G,X) be a
Shimura datum of PEL type, coming from data (B, ∗, V, ψ), and fix a compact open subgroup
Kp ⊂ G(Ap

f ). Let E be the reflex field and ν a place over p, with completion Eν , and fix
integral data OB,L as above (but now globally, over Z!). We define SKp to be the moduli
problem sending an OEν -scheme S to the set of isomorphism classes of tuples (A, λ̄, ηKp),
where A is a chain of OB-abelian varieties of type (L) (i.e. a functor from L to abelian
varieties with OB-action with isomorphisms θx satisfying conditions as for chains of OB-p-
divisible groups), λ̄ is a Q-homogeneous principle polarization of A (i.e. a compatible system
of principle polarizations), and ηKp is a Kp-orbit of isomorphisms η : H1(A,Ap

f )
∼→ V (Ap

f )
compatible with λ up to a constant in (Ap

f )
×, such that detOS(x|LieAΛ) = detQp(x|V1). This

is representable by a quasiprojective scheme over OEν , which form a projective system with a
right action of G(Ap

f ) and gives a model, up to the level structure at p, for the corresponding
PEL Shimura variety Sh(G,X) over OEν .

Suppose we want to understand SKp(Fp), as we have been interested in in the past.
In particular, as before, we fix some point x0 = (A0, λ̄0, η0K

p) ∈ SKp(Fp) and want to
understand the set of points in SKp(Fp) isogenous to this initial point. To A0 we can associate
an isocrystal, on which λ̄ induces a polarization; this corresponds to some b ∈ G(Qunr

p )
compatible with the conjugacy class of cocharacters µ corresponding to X (already part of
the Shimura datum).

On the other hand, associated to the data (B, ∗, V, ψ,OB,L) and each choice of b, µ (fixed
by the choice of x0), we get a Rapoport-Zink space M̆ over Spf ŎEν , which we can descend
to a formal proschemeM over SpfOEν . Our goal is to construct a morphism between these,
M→ SKp , whose image on Fp-points gives the points of SKp(Fp) isogenous to x0.

To have any hope of being natural such a map should respect the G(Ap
f ) action, but

none exists on the left; we fix this by adding a factor of G(Ap
f ) with the action by right

multiplication, so we now hope to build a suitable map M×G(Ap
f )→ SKp . This should of

course be Kp-invariant, so we hope it descends to M×G(Ap
f )/K

p → SKp .
The functor M arises via deformations of a polarized p-divisible group X. Since SKp is

8
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built around the same structures as M, they have the same invariants and in particular we
can find an element A of the isogeny class of A0 whose p-divisible group is X. The quasi-
isogeny A → A0 induces a polarization and level structure. By Serre-Tate, deformations of
X correspond to deformations of A, and this map X̃ 7→ Ã with the corresponding additional
structure gives a mapM→ SKp ; to make it G(Af )-equivariant, we send (X̃, g) to the twist

(Ã, λ̃, η̃gKp) over Spec ŎEν , which is manifestly Kp-invariant.
Let I(Q) be the automorphism group of A, i.e. the group of quasi-isogenies respecting

the polarization. This has a homomorphism to G(Ap
f ) by ξ 7→ η ◦ V p(ξ) ◦ η−1, induced from

the action on the Tate module of A composed with the level structure. It extends to an
algebraic group I over Q which acts on the left but not on the right, and makes the map
descend to

I(Q)\M̆ ×G(Ap
f )/K

p → SKp ×SpecOEν Spec ŎEν .

This is the uniformization map; one can check that it is compatible with the descent data
to SpecOEν on both sides. After viewing SKp as a formal scheme over OEν , in a somewhat
nontrivial way (completing along the images of irreducible components of I(Q)-orbits), we
get a G(Ap

f )-equivariant isomorphism of formal schemes over OEν

I(Q)\M×G(Ap
f )/K

p → SKp .

By construction, the image on Fp-points consists of elements in the isogeny class of x0; the
fact that it gives all of them, like the proof that this is an isomorphism, we omit.

One can also take rigid generic fibers to get an isomorphism of rigid spaces, classifying
a similar problem over Af instead of Ap

f where we add level structure at p corresponding to
the choice of integral data OB and L.

One example is counting supersingular elliptic curves. Let B be the quaternion algebra
over Q split away from p and∞, so thatB ∼= End0(E) for E a supersingular elliptic curve over
Fp, acting on H1(E,Q). This gives rise to a Shimura variety for G = B× classifying polarized
elliptic curves with an action of B and some level structure; we take Kp = OB(Ap

f ) =

End(E0)⊗Z Ap
f . Fixing E0 supersingular over Fp, its p-divisible group has dimension 1 and

height 2 and so the Rapoport-Zink space M parametrizes deformations; in particular the
Fp-points are just the single point E0. Finally I(Q) is the set of self-isogenies of E0 respecting
the polarization corresponding to the involution and so is just End0(E0) = B×(Q). Therefore
the isogeny class of E0, and thus the set of all supersingular curves over Fp, is in bijection
with

B×(Q)\B×(Af )/OB(Af )

(the factor at p has trivial contribution).
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