Rapoport-Zink spaces®
Avi Zeft

1. LUBIN-TATE SPACE

We start by trying to do explicit local class field theory. Given a p-adic field F//Q,, by local

class field theory we can describe Gal(F/F)* as OF x Z. The fixed field of the O5 factor is
the maximal unramified extension of F', which is generated by roots of unity of order prime

to p; what about the totally ramified extension 7

In the case ' = Q,, this is the field generated by the pth power roots of unity, i.e. the
p-torsion in Gy,. This suggests we should replace Gy, by some other object G for general
p-adic fields F', carrying an action of OF.

We can construct these objects as formal group laws. A (one-dimensional commutative)
formal group law G over a ring A is a power series G(X,Y) € A[[X, Y]] such that G(X,Y) =
X 4+ Y + higher order terms, G(X,Y) = G(Y,X) (commutativity), and G(G(X,Y),Z) =
G(X,G(Y, 7)) (associativity). From these axioms it is possible to derive the existence of an
inverse i(X) € A[[X]] with G(X,i(X)) = 0. This is analogous to addition on an abelian
group, and we write it as G(X,Y) = X +¢ Y; the simplest case is G(X,Y) = X + Y, the
additive group law G,. The multiplicative group law is simply X +Y + XY = (X + 1)(Y +
1) — 1. Elliptic curves also have associated formal group laws. We define a homomorphism
f:G — G of formal groups to be a power series such that f(X +gY) = f(X) +¢ f(Y), or
in other words f(G(X,Y)) = G(f(X), f(Y)).

For any natural number n, we write [n|g(X) for the n-fold application of G to X, i.e.
X 4+¢ X +¢ -+ +¢ X; this satisfies [n]g(X +¢ V) = X +gY 4+¢ X + - +¢ X +¢g YV =
[n]g(X) + [n]g(Y) by commutativity, so it is an endomorphism of G. Via i(X), we can do
the same thing for negative numbers to get a map [-]g : Z — End G, which is just the map
coming from the fact that End G is a (possibly noncommutative) ring and Z is initial among
rings.

More generally, for ' a p-adic field and A an Op-algebra, we say that a formal group
law G over A is a formal Op-module law when it has a homomorphism [-]g : Op — End g
extending the map from Z and such that [a]g = aX + O(X?) for a € Op, where on the right
we interpret a as its image in A.

For example, the additive group law becomes a formal Op-module over any Op-algebra
A. In the case ' = Q,, the multiplicative group law becomes a formal Z,-module because
for a € Z, we can define [alg,, (X) = (1 + X)* — 1. In particular multiplication by p gives
Pl (X) = (1+XP)—1=X? (mod p).

Let m be a uniformizer for F', and ¢ be the cardinality of the residue field k. It turns
out that we can define a formal Op-module over O by choosing [r|g and constructing the
rest of G from it. Fix a power series f(X) € Op[[X]] such that f(X) = 71X + O(X?) and
f(X) = X? (mod 7). (Note that in the case F' = Q, and m = p, [p]g,, has this property.)
Then there exists a unique formal Op-module law G over OF such that [r]g = f(X).

To see this, recall that [r]g is by definition an endomorphism of G, i.e. a power series
f(X) such that f(X +gY) = f(X) +g f(Y). If we write X +gY = X +Y + ay0X? +
a11 XY +ag2Y?+ -+ and f(X) =7X + by X? + b3 X? + - -+, this is

*These notes are based on [2] and chapter 24 of [1].
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1. LUBIN-TATE SPACE

T(X +Y +ag0X? + a1 XY +ag2Y?+ ) + bo( X2+ 2XY + V74 ) 4 -
=nX —+ b2X2 + Y -+ bQY2 + (1,2707T2X2 —+ 0,1’17T2XY -+ a0’27r2Y2 -+

and so collecting terms we get that for coefficients of X? we have
Q2,07 -+ bQ = bz + Cl2707T2,

so ago = 0, for XY we have
2
Q117 + 2b2 = a7,

S0 a1,; = 32 (note that we assume f(X) = X9 (mod ) so for ¢ # 2 we always have b,
divisible by m, so this is still in Op; if ¢ = 2 then the numerator has a factor of 2, so it is
again in O), and for Y2

ag 2™ + by = by + a0,27T2=

so ape = 0. We can proceed similarly in higher degrees: the key point is that this formula
gives a unique value of each coefficient of G. Indeed, different choices of f give isomorphic
g.

Choose some f (for example, f(X) = 7X + X? works) and the corresponding G. Over a
separable closure, let G[7"] be the set of elements of the maximal ideal which are killed by
[7"]g; over k, this is just 27", corresponding to ¢"th roots of unity, and so lifts uniquely by
Hensel’s lemma to a set G| of order ¢". For each n, further action of [r]g gives a surjection
Gr"] — G[n"] with kernel G[r], of order g; each G[n"] is a free Op /7" Op-module of rank 1.
We can define an extension F of F' generated by the G[n"] for all n > 1, and a Tate module

T.(9) = limG[r"].

This is a free Op-module of rank 1 with a continuous Galois action by Gal(F,/F); Lubin
and Tate showed that this action induces an isomorphism Gal(F,/F) — Aut(7,(G)) = OF,
as desired.

What we essentially did here was choose a formal group law over k = F,, and show that
we could lift it uniquely to a formal Op-module over Op. In general, this is a bit more
complicated, but is essentially what we want to do. The first thing is to study formal group
laws over [F,: it turns out that these are classified by positive integers, called their heights.

Fix a formal group law G over F,. Then we always have the action of integers [n|g;
in particular we can look at [p|g, where plg. We have [plg(X) = pX + O(X?) = O(X?)
over F,. Differentiating G with respect to one Variable we have (0xG)(X,Y) =1+ -,

and in particular (0xG)(0,Y) =14+ O(Y). Now m dY and W are both G-

invariant differentials for any automorphism f of G, and since this space is a free F,-module
of dimension 1 they differ by a constant, which can be determined by the difference at 0,
%. In the case f = [p|g, we have f(0) = f'(0) =0, so @ng)/((% = 0 and therefore
f/(Y) =0, ie. if [plg(X) = pX + by X? + --- then we must have every b; equal to 0 in F,
unless i is divisible by p, i.e. [p|]g factors through X — XP?.

It is possible that [p]g factors through X — X?" for some h > 1, i.e. [p] vanishes modulo

p"; in this case we say that G has height h for the maximal such h, and the above shows
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2. RAPOPORT-ZINK SPACES

that every formal group law over G has a height. If this height is infinite then G(X,Y) is
just X +Y, ie. G = G,; in general by checking coefficients and using induction one can
verify that two formal group laws with the same height are isomorphic. On the other hand
the argument from before shows that we can always find a formal group law with [p]g = X P!
over I, for any positive integer h, so the formal group laws over any finite field (or F,) are
classified by positive integers (plus infinity). (One can also prove this result via Dieudonné
theory.) The case above is h = 1 for F' = Q,, and in general h = [F : Q).

To get formal group laws over rings such as Op, since the height is determined by the
setting there is a unique such formal group law over the residue field k, and so the problem
is just one of deforming formal group laws. This motivates the deformation problem for
formal group laws: let Gy be the unique one-dimensional formal group law of height /i over
k =Ty, and let W = W(k) and Ko = W[l/p] = Qur. If C is the category of complete
local noetherian W-algebras with residue field k, we define M, to be the functor C — Set
sending A to the set of isomorphism (really isogeny, see below) classes of one-dimensional
formal group laws G over A together with an isomorphism Gy — G ®4 k.

It turns out that this functor is representable by an adic ring non-canonically isomorphic
to W{[t1,...,tn_1]], or equivalently the space Spf W{[ty,...,t,_1]]. In particular in the case
h =1 we get that there is a unique lift of Gy to characteristic 0. We get a universal formal
group G over W/[t1, ..., ty_1]] whose special fiber is Gy.

We can pass to the rigid generic fiber My of My; this is the rigid open unit ball. This is
the Lubin-Tate deformation space at level 0.

Drinfeld showed how to add level structure to get a tower of moduli problems: in par-
ticular to a formal group law G over A with an isomorphism Gy — G ® 4 k, we add the data
of an isomorphism « : (Z/p"Z)®" — G[p"] of Z/p"Z-modules. We call the corresponding
moduli problem M,,, so that for n = 0 the additional data is trivial and we obtain M, as
expected; Drinfeld constructed rigid spaces M, such that for finite extensions K/Kj the
K-points of M,, classify points of M,, over K. These give étale covers M,, — M, with
Galois group G = GL,(Z/p™Z), which together form the Lubin-Tate tower. Using Drinfeld
level structures, this can be extended to a formal model over W. At least on points (though
not as rigid spaces) one can take the limit to get a space M, which we can even think of
just as the tower, which admits right actions of GL,(Q,), the endomorphisms of G, or more
precisely J = (End Gy ®z, Q,)*, and the Weil group Wg,; these actions on cohomology
realize the local Langlands correspondence.

When h = 1, each M,, has dimension 0 and so M has dimension 0: every lift of Gy = G,
is Gy, and so M just classifies level structures a : Q, = V(Gy,) = Q,(1), i.e. M gives the
set Qp(1)* of nonzero elements of Q,(1). In this case G = GL,(Q,) and J = Autg,(Gn,) are
both given by Q,, though with inverse actions, and the action of the Weil group is via the
reciprocity map Wo, — W&E =Q,.

2. RAPOPORT-ZINK SPACES

We can rephrase in terms of p-divisible groups. For the application to class field theory,
we took our formal Op-module G and looked at the groups G[n"] and their limit 7,(G). A
concrete definition is as a special kind of formal group law. First, we have to reinterpret
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in a more geometric way: a formal group over A can be thought of as a group object
in the category of formal Lie varieties over A (i.e. a formal scheme locally isomorphic to
A[[X, ..., X,]] for some n), after choosing a coordinate. In this case we write A(G) for
the coordinate ring of G as a formal scheme, so that each endomorphism of G induces an
endomorphism of A(G) as an A-module. In particular we can look at the endomorphism
[plg: we say that G is p-divisible if [plg : A(G) — A(G) makes A(G) a finite module over
itself, in which case it is locally free over itself of rank p" for some positive integer h. We
say that h is the height of the p-divisible group. More abstractly, a p-divisible group is an
inductive system of finite commutative flat p-group schemes G[p"] such that multiplication
by p"~! has kernel G[p"~!]. Tt follows that we have exact sequences

0—G[p™ — Gp™™" — G[p"] — 0,

and so if the order of G[p] is p* (as it must be for some integer h > 0) then the order of G[p"]
is p"* by induction, in which case we say that G has height h.

In all the above, isomorphisms are isogenies, i.e. morphisms with finite kernel. We can
also consider quasi-isogenies, which are isogenies up to factors of *.

This framework is much more amenable to discussing higher-dimensional objects than
explicit formal group laws, but the concepts are essentially similar, and p-divisible groups
over finite fields (or F,) are classified by their dimension d and height h. One can also
compute their deformation rings in a similar way: it is W{[t1,. .., tan—q)]], recovering the
deformation ring for d = 1 for one-dimensional formal groups. These can be identified with
central simple algebras over Q, by Dieudonné theory, which are classified in a similar way.

We can finally define Rapoport-Zink spaces. Let X, be a p-divisible group over H*Tp, and
consider the moduli problem Defx,, i.e. the functor sending a formal scheme S over Spf W to
the set of isomorphism classes of p-divisible groups X over S together with an isomorphism
Xy XEE — X xg S, where S =9 X spf W Spec E. Here isomorphisms are quasi-isogenies.

Rapoport and Zink proved that Defy, is representable by a formal scheme My, over
Spf W, which is formally smooth and locally formally of finite type, and each irreducible
component of the special fiber is proper over Spec E.

We can again take the generic fiber as an adic space, written My, g, (recall Ky =
Frac W). This has a moduli interpretation: consider the functor sending complete Huber
pairs (R, R") over (Ko, W) to the colimit over open bounded W-subalgebras Ry C R
of Defx,(Rp). If we view this as a presheaf on the opposite category, its sheafification
is represented by My, k,. In other words, a section of My, over (R, R") is a covering
of Spa(R, R™) by rational subsets Spa(R;, R;") and a system of compatible (on overlaps)
deformations to open bounded W-subalgebras (R;)o C R; of Xj.

This Rapoport-Zink space parametrizing deformations of p-divisible groups, or equiva-
lently p-divisible groups with fixed dimension and height, should be thought of as analogous
to Shimura varieties parametrizing abelian varieties with certain invariants (such as dimen-
sion, with height corresponding to the choice of conjugacy class of cocharacters). To get
an inverse system, we would need to add level structure; even so, we get only very simple
Shimura varieties (roughly Hilbert modular varieties). To get more, e.g. PEL, Hodge, or
abelian Shimura varieties, we need to classify more data, such as Hodge tensors.

Correspondingly, we want to generalize our moduli problem to get more general Rapoport-
Zink spaces. To know how to do this, we need to say more precisely what the problem we’re

4



2. RAPOPORT-ZINK SPACES

trying to solve is. We’ll say more about this when we discuss moduli spaces of local shtukas,
but broadly the goal is to construct local analogues of Shimura varieties, which we can then
hope have similar applications to the local Langlands program as Shimura varieties do to
the global setting. Recall from our discussion of the Langlands-Rapoport set that a (global)
Shimura datum (G, X) at each prime p we obtain an element b € G(@p) or equivalently
G(sz), defined up to o-conjugacy and a conjugacy class of cocharacters p : G, — G@p.
Each b defines a map D — PB(p)"™ — Eg/qur — G(Q)™), and varying b gives a o-equivariant
map v from the set B(G) of o-conjugacy classes in G(Q,™) to the set N(G) of o-invariant
conjugacy classes of morphisms D — GQEM (which can be identified with o-invariant cochar-
acters). Any cocharacter projects to an element of the fundamental group, and from there
to the o-coinvariants; the Cartan decomposition G(Qy™) = |, G(W)u(p)G(W) over dom-
inant weights p (or its generalization to other p-adic fields via other uniformizers) lets us
send b € G(Q,™) to the p labeling its stratum, and thence to m(G). We call this map
K¢ @ B(G) — m(G). For any dominant cocharacter p of G, we define B(G, ) C B(G) to
be the subset of b such that v(b) < i in the sense of weights and K¢ (b) is the class of p in
m(G),, where fi is given roughly by tracing down to the base field (say Q, for simplicity):
if G has splitting field of degree m over Q,, then

3

1 ;
m= o' ().

I
o

%

In our case, the compatibility condition is that b must be in B(G, u™!), i.e. v(b) < p~ ! and
Kg(b) = —p. This is because otherwise the corresponding local Shimura variety will turn
out to be empty.

We also require p to be minuscule, i.e. all its weights have multiplicity 1. This translates
to our condition that the action of G,, on Lie(G¢) by ad o i has only characters of weight
—1,0, or 1.

The Rapoport-Zink spaces are supposed to be incarnations of this notion of local Shimura
varieties. The case we considered above, where M x, classifies deformations of a p-divisible
group X, over IETD which is determined by its dimension d and height h, corresponds to
G = GL;, and b corresponding to the map D — G giving the isocrystal of X, determined
by Dieudonné theory. In this case p has weight 1 on dimensions spanned by the isocrystal
in question, i.e. up to dimension d, and 0 otherwise, i.e. u corresponds to the weight
(1,...,1,0,...,0) with d occurrences of 1.

More generally, let’s consider the case of Shimura data of PEL type. In this case we have
a semisimple Q-algebra B with involution *, and a finite-dimensional B-module V' with an
alternating pairing v compatible with the involution. To get local data, we simply complete
at p to get (by an abuse of notation) a semisimple Q,-algebra B with involution * and a
finite-dimensional B-module V' with an alternating pairing 1) compatible with the involution;
let F'/Q, be the center of B, which we may as well assume is a field (after taking factors),
and G is the B-similitudes of (V) over Q, which we assume connected, with a character
¢: G — Gy, defined by the similitude. This has a degree 2 subfield F{, which is the subfield
fixed by .

In the local setting, we also need to fix an integral structure. First we fix a maximal
order Op C B; then let £ be a chain of Opg-lattices in V, i.e. a set of Opg-lattices in V
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such that for any two A, A’ € L either A C A" or A’ C A, and if x € B* normalizes Op
(i.e. zOpx~! = Op) then it preserves L, i.e. zA € L if A € L. We further require £ to be
self-dual, i.e. £ is closed under duals: if A € £ then A* € £, with respect to the pairing .
We define the corresponding group scheme G to be the group of compatible isomorphisms of
all A € L. To make this precise, we introduce a new notation.

For any Z,-algebra R, we say that a chain of Op ®z, R-lattices of type (£) is a functor
A — My from £ to Op ®z, R-Mod equipped with isomorphisms 60, : M§ = M, for any
x € B* normalizing Op, where M} is My with the Op-action conjugated by z, such that
M, is locally (over Spec R) isomorphic to A ®z, R as Op ®z, R-modules; M is compatible
with quotients, i.e. My/My = A/N ®z, R for A" C A adjacent (whatever that means—
finite quotient?); the isomorphisms 6, are functorial, i.e. commute with the transition maps
My — Mys; and for x € B*NOp normalizing Op, 6, is just multiplication by z. A polarized
chain of Op®z, R-lattices of type (£) is a chain My of type (£) together with an isomorphism
My ~ Mj}. ®r L of chains for some invertible R-module L.

Note that the identity functor makes £ a chain of lattices of type (£) for R = Z,, with
polarization coming from . We can then define G to be the automorphisms of £ as a
polarized chain of lattices of type (£). This is a smooth group scheme over Z, extending
G, and for any Z,-algebra R we get a natural equivalence between G-torsors over R and the
groupoid of polarized chains of Op ®z, R-lattices of type (L£).

In the global setting, we’d want our Shimura variety to parametrize abelian varieties with
a B-action, polarization, and level structure. In the local case, we replace abelian varieties
by p-divisible groups and add the integral structure: we define a chain of Opg-p-divisible
groups of type (L) over a Z,-algebra R on which p is nilpotent to be a functor A — X,
from L to the category of p-divisible groups over R with Op-action (corresponding to formal
Op-module laws), together with an isomorphism 6, : X{ = X, for all € B* normalizing
Op, with XY similarly to above X, with the z-conjugate action of Op, such that the 6,
are functorial, for x € B* N Op normalizing Op the 6, are just multiplication by x, and
if £X, is the universal vector extension of X, (i.e. the universal extension by G,), then
A — Lie(EX,) defines a chain of Op ®z, R-modules of type (£). A polarized chain of
Op-p-divisible groups of type (£) is a chain as above together with a Z,-local system L on
Spec R and an isomorphism

Xp & XX* Qz, L.

These have a natural notion of isogeny between them, and similarly quasi-isogeny; we con-
sider quasi-isogenies to be isomorphisms.

Finally we require an admissibility condition: a chain X, of Opg-p-divisible groups of
type (£) over R is admissible if it satisfies a determinant condition: fix a conjugacy class of
minuscule cocharacters p : G, — G@p. We have the requirements that co u : G, — Gy

is the identity and the weights of this character on V' ®q, @p are only 0 and 1, so we get
a decomposition V = Vy @ Vi; thus any * € Op acts on both Lie X, and Vi, and the
determinant condition is that

detg(z| Lie X) = detg (z|V1)

for all x € Op. Note that although the right-hand side a priori only has values in @p, by the
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weight condition the action is actually defined over the reflex field E, and by integrality the
values are in O which maps to R.

In the case we looked at above, b determined the p-divisible group Xy and p was chosen
to be compatible with b (or equivalently Xj). In the more general PEL setting the idea is
the same: b € B(G) corresponds to a map D — G giving an isocrystal with B-structure.
Fixing a chain £ and a maximal order Op, for each A € £ we get an integral structure and
thus a p-divisible group over IE‘_p with an Opg-action, which extends to a functor, i.e. a chain
of Op-p-divisible groups of type (L) up to quasi-isogeny, with polarization coming from the
dualization with respect to ¢. We write this chain as Xj x. Fix p such that b € B(G, u™).

We can finally define the moduli problem in the PEL setting. Fix a datum D =
(B,V,0p, L,1,%,b, 1) as defined above. Let O be the ring of integers of W ®z, F; ev-
erything will be over this ring. The moduli problem Mgp over Spf O sends a p-torsion
O-algebra R to the set of polarized chains of @p-p-divisible groups X, of type (L) over R
which are admissible with respect to p with quasi-isogenies

XA Xgpeck, Spec R/p — XA Xspec R Spec R/p,

i.e. deformations of the chain Xj 4.

For each A € L, we get a map Mp — My, , in the sense above, deformations of the
single Op-p-divisible group Xj 5 by forgetting the rest of the structure. Taking the product
gives a map

MD — HMXb,A'

Ael

It turns out (by results of Rapoport and Zink) that this is a closed immersion, and the
same is true taking a sufficiently large finite subset of £. In particular, each factor on the
right-hand side is representable by a formal scheme locally formally of finite type over Spf (5,
and so so is Mp. One can again take the generic fiber and try to understand its moduli
structure.

For example, consider the simplest situation B = Q,, with trivial involution and V = Qg
with the standard alternating pairing ¢). In this case there is a unique maximal order Op,
namely the integers Z, whose action is automatic, and G = GSp,(V,¢) ~ GL3(Q,). The
cocharacters we consider must have weights 0 and 1, so the only possibilities are for weights
(0,0), (1,0), or (1,1), i.e.

in some basis. The weight decomposition for p; gives V3 C V' of dimension 7, with multiplica-
tion by x € Op = Z, just the scalar action, so det(x|V}) = z*, so the action on Lie X, must
be the same for the determinant condition, i.e. dim X, = ¢. In the dimension 0 case, there
is a unique lift to characteristic 0 and so X, is a constant functor and in particular does not
depend on L, and so this recovers the trivial case of the above case for GLy parametrizing
deformations of the zero-dimensional p-divisible group over E of height 2.

The remaining cases are more nontrivial. However, we can note that the unique p-divisible
group X, over F, of height 2 and dimension i has a Dieudonné module defining a Z,-lattice
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in V', which generates a canonical £, with polarization corresponding to v; thus we recover
the case of the deformations of X, as a special case.

Note that the extra data of Op and £ we use to define the integral structure gives rise
to the level structure: G(Z,) gives a compact open subgroup, and varying the Op and L
gives different extensions G. We could take the limit over different choices to get a tower of
Rapoport-Zink spaces.

It should be possible to do similar constructions at least for Shimura varieties of Hodge
even abelian type, but this is complicated enough for now.

3. p-ADIC UNIFORMIZATION

Remarkably, it is possible to use these local analogues of Shimura varieties to say something
in the global setting. In particular, by slightly changing the moduli problem we can get
models of Shimura varieties over W, and it is possible to describe the points of these models
in a way analogous to how we describe the C-points of Shimura varieties by a double quotient.

First, let’s define our moduli problem. We won’t go more general than the PEL setting,
though again it’s possible to generalize to Hodge and even abelian type. Let (G, X) be a
Shimura datum of PEL type, coming from data (B, %, V, 1), and fix a compact open subgroup
KPP C @G (A‘?). Let E be the reflex field and v a place over p, with completion F,, and fix
integral data Opg, L as above (but now globally, over Z!). We define Sk» to be the moduli
problem sending an O, -scheme S to the set of isomorphism classes of tuples (A, X\, nK?),
where A is a chain of Opg-abelian varieties of type (£) (i.e. a functor from £ to abelian
varieties with Op-action with isomorphisms 6, satisfying conditions as for chains of Og-p-
divisible groups), A is a Q-homogeneous principle polarization of A (i.e. a compatible system
of principle polarizations), and nK? is a KP-orbit of isomorphisms 7 : H;(A, A};@) = V(A?)
compatible with A up to a constant in (A%)*, such that deto (| Lie Ay) = detg, (|V1). This
is representable by a quasiprojective scheme over O, , which form a projective system with a
right action of G (AI}) and gives a model, up to the level structure at p, for the corresponding
PEL Shimura variety Sh(G, X) over Og, .

Suppose we want to understand Sk (I[‘Tp), as we have been interested in in the past.
In particular, as before, we fix some point zg = (Ag, A, MoKP) € SKp(]I‘Tp) and want to
understand the set of points in Sk» (E) isogenous to this initial point. To Ay we can associate
an isocrystal, on which X\ induces a polarization; this corresponds to some b € G(ng)
compatible with the conjugacy class of cocharacters p corresponding to X (already part of
the Shimura datum).

On the other hand, associated to the data (B, x, V, 1, Opg, L) and each choice of b, 1 (fixed
by the choice of xy), we get a Rapoport-Zink space M over Spf O g, , which we can descend
to a formal proscheme M over Spf Op,. Our goal is to construct a morphism between these,
M — Sk», whose image on F,-points gives the points of Sk»(F,) isogenous to .

To have any hope of being natural such a map should respect the G(A?) action, but
none exists on the left; we fix this by adding a factor of G(Aiﬁ) with the action by right
multiplication, so we now hope to build a suitable map M x G (AI}) — Skv. This should of
course be KP-invariant, so we hope it descends to M x G(A})/K? — Sk».

The functor M arises via deformations of a polarized p-divisible group X. Since Sg» is
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built around the same structures as M, they have the same invariants and in particular we
can find an element A of the isogeny class of Ay whose p-divisible group is X. The quasi-
isogeny A — Ap induces a polarization and level structure. By Serre-Tate, deformations of
X correspond to deformations of A, and this map X — A with the corresponding additional
structure gives a map M — Sk»; to make it G(Ay)-equivariant, we send (X, g) to the twist
(A, X, g KP) over Spec Op, , which is manifestly KP-invariant.

Let I(Q) be the automorphism group of A, i.e. the group of quasi-isogenies respecting
the polarization. This has a homomorphism to G(A%) by & = no V?(§) on~!, induced from
the action on the Tate module of A composed with the level structure. It extends to an
algebraic group I over Q which acts on the left but not on the right, and makes the map
descend to

T(Q)\M x G(AR)/K? — Siv Xspec 0y, SpeC Opv.

This is the uniformization map; one can check that it is compatible with the descent data
to Spec O, on both sides. After viewing Sk» as a formal scheme over O, , in a somewhat
nontrivial way (completing along the images of irreducible components of 1(Q)-orbits), we
get a G (A’})—equivariant isomorphism of formal schemes over Op,

[(Q)\M x G(A)/K? — Sio.

By construction, the image on F,-points consists of elements in the isogeny class of x; the
fact that it gives all of them, like the proof that this is an isomorphism, we omit.

One can also take rigid generic fibers to get an isomorphism of rigid spaces, classifying
a similar problem over A instead of AI} where we add level structure at p corresponding to
the choice of integral data Op and L.

One example is counting supersingular elliptic curves. Let B be the quaternion algebra
over Q split away from p and oo, so that B = End"(E) for E a supersingular elliptic curve over
F,, acting on H,(E, Q). This gives rise to a Shimura variety for G = B* classifying polarized
elliptic curves with an action of B and some level structure; we take K? = (QB(A?) =
End(Ep) ®z Ai’c. Fixing Fj supersingular over E, its p-divisible group has dimension 1 and
height 2 and so the Rapoport-Zink space M parametrizes deformations; in particular the
F_p—points are just the single point Ey. Finally 7(Q) is the set of self-isogenies of Fy respecting
the polarization corresponding to the involution and so is just End’(Ey) = B*(Q). Therefore
the isogeny class of Ey, and thus the set of all supersingular curves over [, is in bijection
with

B*(Q\B"(As)/Op(Ay)

(the factor at p has trivial contribution).
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