
Tate’s thesis∗

Avi Zeff

Our goal is to understand ‘automorphic representations for GL1,’ i.e. representations of
K×\A×K for number fields K (the theory also works for function fields, but we will focus on
the number field case for simplicity) where AK is the ring of adeles over K. Unlike the case
for more complicated groups, this group is abelian, and so its irreducible representations
are just the characters Hom(K×\AK ,Gm); generally we take coefficients in C, so Gm can be
thought of without harm as just C×. This is a group, the Pontryagin dual of K×\A×K , and so
it is natural to attempt Fourier analysis on it. (Indeed, this is one of the main motivations for
the adeles: Fourier analysis only works well on locally compact topological abelian groups,
including the additive (and multiplicative) groups of local fields but not of global fields. We
can nevertheless get a global object by taking the product of all local fields; to get something
which is locally compact, we take the restricted product instead, and thus obtain the adeles.

Fourier transforms over A×K decompose into factors given by the Fourier transform at each
place (when the original function does). Adjusting these local integrals by local L-factors
gives a natural functional equation, while Poisson summation gives a functional equation for
the adelic Fourier transform; combining these gives a functional equation for the product of
the local L-factors, i.e. the L-function corresponding to the chosen character.

Fix a character χ : K×\A× → C×. Consider the map x 7→ χ(x)
|x|s , where |x| is the absolute

value on the adeles |x| =
∏

v |x|v (note any element of K× in A×K has absolute value 1, so
this descends to K×\A×K) and s is any complex number. This is also a character, since both
χ and | · |s are, and it has image in the unit circle in C×, so we can write any character of
K×\A× as x 7→ χ(x) · |x|s for some complex number s with |χ(x)| = 1 for every x.

Thus if f is some well-behaved function on K×\A×K , its Fourier transform at the character
χ(·)| · |s is

f̂(χ, s) =

∫
K×\A×K

f(x)χ(x)|x|s d×x

where d×x the Haar measure on K×\A×K with the right normalization to make Fourier
inversion work. (We’ll say more about this.) In fact, it is convenient to work over A×K rather
than its quotient by K×, where we can interpret χ as a K-invariant function; if we choose
f to be nice enough on A×K this will still converge, and we can recover the above integral by
taking f to be K×-invariant.

Thus we’re studying integrals of the form∫
A×K

f(x)χ(x)|x|s d×x

for a suitable Haar measure d×x on A×K , which factors as d×x =
∏

v d
×xv for some Haar

measures d×xv on each K×v ; we fix the choice of d×xv such that for v nonarchimedean O×v
has volume 1, and for v archimedean d×xv = dxv

|xv |v ; note that we normalize the absolute

values (a priori defined only up to equivalence) such that multiplication by a multiplies the

∗These notes are based on section 3.1 of [1].
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measure by |a|v, so in particular the real absolute value is the usual one but the complex
absolute value is its square. We call this integral ζ(s, χ, f).

To avoid issues of convergence and make Fourier inversion work reliably (keeping in mind
we may want to do Fourier analysis work for either the additive or multiplicative groups), we
want to find a good space of functions on AK which is preserved under convolution and the
Fourier transform. We work one place at a time. In the archimedean case, we can do this
analytically: the space of Schwartz functions on R is the space of smooth functions R→ C
whose derivatives are all sub-polynomial, i.e. xa d

bf
dxb

is bounded for all nonnegative integers
a, b. One can also do this for higher-dimensional vector spaces by requiring all derivatives
bounded in this way, and in particular by viewing C as R2 we get a Schwartz space for C. For
nonarchimedean local fields F , we say that a function on F is smooth if it is locally constant,
and define the Schwartz space for F to be the set of compactly supported smooth functions
F → C. These all give C-vector spaces, and we can take the restricted product over all
places to get a space S(AK) of Schwartz functions on AK , where the restriction is that for
all but finitely many places v the decomposable tensors f =

∏
v fv should have fv equal to

the characteristic function of the ring of integers Ov (possible only for v nonarchimedean).
One can define a similar notion for vector spaces over AK .

Since every element of S(AK) can be written as a linear combination of decomposable
tensors, it suffices to understand the theory for them. In that case we formally have

ζ(s, χ, f) =

∫
A×K

f(x)χ(x)|x|s d×x =
∏
v

∫
K×v

fv(xv)χv(xv)|xv|sv d×xv

since every term in the integral factors (here χv is the restriction K×v ↪→ A×K
χ−→ C×). We

call these local integrals at each place v the local zeta integrals ζv(s, χv, fv). To see that this
is a genuine identity, we need to know that these integrals converge, at least in some region.

Proposition 1. For any Schwartz functions f on AK and fv on Kv for any place v, the
local integral ζv(s, χv, fv) converges for Re(s) > 0, and the global integral ζ(s, χ, f) converges
absolutely for Re(s) > 1, in which case the decomposition

ζ(s, χ, f) =
∏
v

ζ(s, χv, fv)

holds.

Proof. Since |χv(x)| = 1, we have

|ζv(s, χv, fv)| ≤
∫
K×v

fv(xv)|xv|sv d×xv.

On the locus |xv|v > 1, since fv is compactly supported (in the nonarchimedean case) or
rapidly decaying (in the archimedean case) the integral is finite, so we restrict to the locus
|xv|v ≤ 1. This is a compact region, so since fv is continuous it is bounded, so we can
replace it by a constant; since we only need to show convergence, we assume this constant is
1. If v is nonarchimedean, this locus is precisely Ov =

⊔
k≥0 π

kO×v for a uniformizer π, with
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|xv|v = q−k if x is in the k-component, where q = Ov/mv is the cardinality of the residue
field at v. Therefore ∫

K×v :|xv |v≤1
|xv|sv d×xv =

∞∑
k=0

q−ks vol(πkO×v )

where volume is computed with respect to d×xv. The volume is independent of k, and so
this series converges whenever Re(s) > 0. Note that this proof also shows that the choice
for d×xv giving volume 1 to O×v is a natural one.

If v is real, the integral is bounded by the same argument by∫ 1

−1
|xv|sv d×xv.

The chosen measure for R× is given by dxv
xv

, so this is bounded up to a scalar by∫ 1

0

|xv|s−1v dxv =
1

s

for Re(s) > 0; the complex case is similar, with an added integral around the unit circle
(using polar coordinates) which does not change the convergence.

For the global case, given any f there is a finite set S of places such that for v 6∈ S we
have fv given by the characteristic function of Ov. For any v not in S, it follows that

ζv(s, χv, fv) =

∫
Ov\{0}

χv(xv)|xv|sv d×xv =
∞∑
k=0

q−ks
∫
πkO×v

χv(xv) d
×xv.

For all but finitely many v, the character χv of K×v is unramified, i.e. trivial on O×v . To
see this, consider the restriction of χ to A×f . Its kernel contains an open neighborhood of the
identity, which necessarily contains some product of theO×v over all but finitely many v. Thus
choosing S appropriately we can assume that χv is trivial on O×v , so that χv(xv) = χv(π)k

for xv ∈ πkO×v . Therefore

ζv(s, χv, fv) =
∞∑
k=0

(χv(π)q−s)k =
1

1− χv(π)q−s
.

This is precisely the local factor Lv(s, χ) of the L-function L(s, χ), and so∏
v 6∈S

ζv(s, χv, fv) = L(s, χ)
∏
v∈S

(1− χv(π)q−s).

In particular, the right-hand side converges absolutely for Re(s) > 1; taking the finite product
with the remaining ζv(s, χv, fv) gives the product over all v of the local zeta integrals, so
this converges absolutely for Re(s) > 1 and so the above manipulations are valid and this is
equal to ζ(s, χ, f).
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The above proof shows that the global zeta integral is closely related to the L-function
L(s, χ): it agrees with it up to finitely many factors, which however may be complicated.
It also shows that all but finitely many of the local zeta integrals have a very simple form,
which in particular is a rational function and extends meromorphically to the whole complex
plane, possibly with discrete poles along the imaginary axis. We might hope that similar
properties hold for general fv; this is true, but to even state the result we need the additive
Fourier transform.

Fix a nontrivial additive character ψ : AK → C× vanishing on the image of K. For each
place, we get a restriction Kv → AK → C×, with ψ(x) =

∏
v ψv(xv); any other character can

be obtained from ψ by scaling by some a ∈ AK , i.e. ψa(x) = ψ(ax), and so a 7→ ψa gives
an isomorphism between the additive group of AK and its Pontryagin dual. We fix Haar
measures dxv on the additive groups of the local fields Kv such that the volume of Ov is 1
for nonarchimedean v, and the standard measure on R and that induced from R2 for real
and complex v respectively.

The Fourier transform of a Schwartz function fv on Kv (identifying the character group
with Kv as above) is

f̂v(x) =

∫
Kv

fv(y)ψv(xy) dy,

for dy = dyv the chosen Haar measure on Kv. One can verify, using the self-duality and the

fact that fv is Schwartz, that
ˆ̂
fv(x) = f(−x), the Fourier inversion formula, and that f̂v is

Schwartz if fv is.

Proposition 2. For any Schwartz function fv on Kv, the local zeta integral ζv(s, χv, fv)
has a meromorphic extension to all of C, with no poles on Re(s) > 0. Further there is a
functional equation

ζv(1− s, χ−1v , f̂v) = γv(s, χv, ψv)ζv(s, χv, fv)

for some meromorphic function γv(s, χv, ψv) independent of fv, though depending on the
choice of character ψv of Kv.

Proof. We know from Proposition 1 that both zeta integrals are holomorphic for Re(s) < 1
on the left-hand side and Re(s) > 0 on the right, and so the ratio

ζv(1− s, χ−1v , f̂v)

ζv(s, χv, fv)

is meromorphic on 0 < s < 1. We want to show that it is in fact independent of fv; we will
then try to extend the resulting function to all of C.

Suppose that f ′v is another Schwartz function on Kv, so that what we want to prove is
that the above ratio gives the same meromorphic function for fv and f ′v, i.e.

ζv(1− s, χ−1v , f̂v)ζv(s, χv, f
′
v) = ζv(1− s, χ−1v , f̂ ′v)ζv(s, χv, fv).

Indeed, the left-hand side is∫
K×v

χv(x)−1|x|1−sv

∫
Kv

fv(y)ψv(xy) dy d×x

∫
K×v

f ′v(z)χv(z)|z|sv d×z
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where we omit some of the subscript v’s for convenience. Rearranging, this is∫
K×v

∫
Kv

∫
K×v

fv(y)f ′v(z)χv(x
−1z)ψv(xy)|x|1−sv · |z|sv d×x dy d×z.

Letting w = xy for each fixed nonzero y (valid away from a set of measure 0, so we can
ignore it), we have d×w = d×x since they are Haar measures, so this is∫

K×v

∫
K×v

∫
K×v

fv(y)f ′v(z)χv(w
−1yz)ψ(w)|w|1−sv |y|−1v |yz|sv d×x dy d×z.

Now, restricted to K×v , for v nonarchimedean the difference between dy and d×y is that the
former gives volume 1 to Ov, while the latter gives volume 1 to O×v . We can check that
dy
|y|v is a Haar measure for the multiplicative group, since dy is for the additive group, and

correspondingly |y|v d×y is an additive Haar measure, and so the question is only the scalar.
We have ∫

Ov

|y|v d×y =
∞∑
k=0

q−k
∫
πkO×v

d×y =
∞∑
k=0

q−k =
1

1− q−1
,

so d×y = 1
1−q−1 · dy|y|v . If v is archimedean, by definition this scalar is 1, and so if we define

mv to be 1
1−q−1 for v nonarchimedean and 1 for v archimedean the above is

m−1v

∫
K×v

∫
K×v

∫
K×v

fv(y)f ′v(z)χv(w
−1yz)ψ(w)|w|1−sv |yz|sv d×x d×y d×z,

which is symmetric in f and f ′ upon switching y and z, so the desired equation holds.
Thus there is a function γv(s, χv, ψv) independent of fv such that the functional equation

above holds when 0 < Re(s) < 1. We next want to show that it extends to a meromorphic
function on C. Since it is independent of fv, we can choose fv freely. If we choose fv such that
f̂v vanishes near 0 (actually vanishes on a neighborhood of 0 in the nonarchimedean case,
and vanishes at 0 and is very small near 0 in the archimedean case) then ζv(1 − s, χ−1v , f̂v)
is actually convergent for Re(s) large: the danger is that for x near 0 when Re(s) is large
|x|1−sv will blow up, but in this case those terms are killed in any case. Therefore the ratio
of zeta integrals is defined for all Re(s) > 0. Similarly choosing fv to vanish near 0 makes
ζv(s, χv, fv) converge for −Re(s) large, and so the ratio, which is just γv(s, χv, ψv), is defined
meromorphically for all s.

This defines the analytic continuation desired, for any fv: for Re(s) > 0 large, the right-
hand side is defined and so gives a definition for ζv(1 − s, χ−1v , f̂v), while for Re(s) < 1
the left-hand side is defined and γv(s, χv, ψv) is defined as a meromorphic function, and so
dividing by it gives a meromorphic extension of ζf (s, χv, fv) to all of C. Proposition 1 shows
that it has no poles on the region Re(s) > 0.

We can now turn to proving a similar functional equation and analytic continuation for
the global zeta integral, which will in turn imply the functional equation for the L-functions.
First, we need to discuss Poisson summation.

Similar to the local case, we can define the adelic Fourier transform by

f̂(x) =

∫
AK

f(y)ψ(xy) dy.
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Proposition 3 (Poisson summation formula). For any x ∈ A×K and Schwartz function f on
AK, ∑

α∈K

f(αx) =
1

|x|
∑
α∈K

f̂(α/x).

Since f is a Schwartz function (which we can assume decomposes as a product over
places), away from finitely many places S it is the indicator function of Ov on each v 6∈ S,
so we can restrict to α such that |αx|v ≤ 1 for all v 6∈ S. This gives a subring of K finitely
generated over OK , whose embedding in AK,f is discrete; since fv is compactly supported
for every v, including those in S, the support for each nonarchimedean v is finite, and for
the infinite places the exponential decay ensures that both sums converge.

Proof. We prove the result by generalizing: set

F (y) =
∑
α∈K

f((α + y)x),

so that the left-hand side is F (0). This is a continuous function on the compact abelian
group K\AK (as additive groups), whose characters are in bijection with β by y 7→ ψ(−βy),
and so it has Fourier expansion

F (y) =
∑
β∈K

cβψ(−βy)

for some coefficients cβ. We can compute these by orthogonality:∫
K\AK

F (y)ψ(βy) dy =

∫
K\AK

∑
β′∈K

cβ′ψ((β − β′)y) dy = cβ · vol(K\AK)

since the integral of a nontrivial character is 0, while the integral of the trivial character is
the volume. On the other hand the integral on the left is∫

K\AK

∑
α∈K

f((α + y)x)ψ(βy) dy,

which since ψ is K-invariant is the same thing as∫
K\AK

∑
α∈K

f((α + y)x)ψ(β(α + y)) dy.

If α varies over K and y over K\AK , this is the same thing as letting a single variable, say
z, range over all of AK , i.e. ∫

AK
f(zx)ψ(βz) dz.

Letting w = zx, this is ∫
AK

f(w)ψ(wβ/x)
dw

|x|
=

1

|x|
f̂(β/x),
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so in all

cβ =
1

|x| vol(K\AK)
f̂(β/x).

In particular, setting y = 0 in the Fourier expansion of F (y) gives∑
α∈K

f(αx) = F (0) =
1

|x| vol(K\AK)

∑
α∈K

f̂(α/x).

Thus it suffices to show that vol(K\AK) = 1.
To see this, we apply this relation twice, say with x = 1. Then this gives∑

α∈K

f(α) =
1

vol(K\AK)

∑
α∈K

f̂(α) =
1

vol(K\AK)2

∑
α∈K

ˆ̂
f(α).

By Fourier inversion,
ˆ̂
f(α) = f(−α), and since we sum over all of K we have∑

α∈K

f(−α) =
∑
α∈K

f(α)

by reordering the sum, so since we can choose f such that the sum is nonzero we get
vol(K\AK)2 = 1, which implies vol(K\AK) = 1 since it is nonnegative.

We are now ready to prove the global functional equation.

Theorem 4. Let f be any Schwartz function on AK. Then ζ(s, χ, f) has a meromorphic
continuation to all s ∈ C, and it satisfies the functional equation

ζ(s, χ, f) = ζ(1− s, χ−1, f̂).

Proof. Integrating over A×K is the same as integrating over K×\A×K and summing over K×,
i.e.

ζ(s, χ, f) =

∫
A×
f(x)χ(x)|x|s d×x =

∑
α∈K×

∫
K×\A×K

f(αx)χ(αx)|αx|s d×x.

Since χ and | · | are trivial on the image of K× and the integral converges absolutely when
Re(s) > 1, under that assumption this is the same as∫

K×\A×K

(∑
α∈K×

f(αx)

)
χ(x)|x|s d×x.

By the Poisson summation formula,∑
α∈K×

f(αx) = −f(0) +
∑
α∈K

f(αx) = −f(0) +
1

|x|
∑
α∈K

f̂(α/x).

Therefore

ζ(s, χ, f) =

∫
K×\A×K

1

|x|

(∑
α∈K

f̂(α/x)

)
χ(x)|x|s d×x− f(0)

∫
K×\A×K

χ(x)|x|s d×x.

7



We focus on the first term for now. If we replace x by x−1, this becomes∫
K×\A×K

(∑
α∈K

f̂(αx)

)
χ(x)−1|x|1−s d×x,

which we can expand as∫
K×\A×K

(∑
α∈K

f̂(αx)

)
χ(x)−1|x|1−s d×x+ f̂(0)

∫
K×\A×K

χ(x)−1|x|1−s d×x.

Ignoring the two simpler integrals, this is the same formula we got earlier but with the
arguments replaced: the same argument shows that the main term is just ζ(1− s, χ−1, f̂) as
desired.

There are two issues. The first is the remaining integrals: these are not obviously sym-
metric. The other is more subtle: in order to do the manipulations above, we needed to
assume Re(s) > 1; but to do the same thing in reverse on the other side, we would need to
assume Re(1− s) > 1, i.e. Re(s) < 0!

To fix this problem, we split the integral:

ζ(s, χ, f) =

∫
A×K

f(x)χ(x)|x|s d×x =

∫
A×:|x|<1

f(x)χ(x)|x|s d×x+

∫
A×:|x|>1

f(x)χ(x)|x|s d×x.

(The locus with |x| = 1 is measure 0 and so we can omit it, and doing so makes some of the
symmetry arguments easier later.) Call the first integral ζ0 and the second ζ1. In particular
ζ1 is convergent for all s: we know that it is convergent for Re(s) > 1, and when |x| > 1
decreasing Re(s) only makes the integral converge faster. Therefore to prove the extension
to C we can restrict attention to ζ0; we’ll come back to ζ1 for the functional equation.

Since the image of K× has absolute value 1, we can still pass to the quotient and do all
manipulations as above with the restriction to x with |x| < 1; the change of variables to x−1

switches the restriction to |x| > 1, where the same argument proves the convergence of the
main term. Thus we have

ζ0(s, χ, f) = ζ1(1− s, χ−1, f̂)− f(0)

∫
K×\A×K
|x|<1

χ(x)|x|s d×x+ f̂(0)

∫
K×\A×K
|x|>1

χ(x)−1|x|1−s d×x.

By multiplying by a real number, we have a bijection A×K,t
∼→ A×K,1 for every t > 0, where

A×K,t denotes the ideles with absolute value t, which descends to the quotient by K× since
the absolute value is trivial on its image. In particular we can reinterpret these two integrals
as

f(0)

∫ 1

0

ts
∫
K×\A×K,1

χ(tx) d×x d×t

and

f̂(0)

∫ ∞
1

t1−s
∫
K×\A×K,1

χ(tx)−1 d×x d×t.
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If χ is nontrivial on A×K,1 (or equivalently its quotient, since it is trivial on K×) then the

integrals both vanish, and we have ζ0(s, χ, f) = ζ1(1− s, χ−1, f̂), for all s. By applying this
to (1− s, χ−1, f̂), we get ζ1(s, χ, f) = ζ0(1− s, χ−1, f̂), and so combining these gives

ζ(s, χ, f) = ζ0(s, χ, f) + ζ1(s, χ, f) = ζ1(1− s, χ−1, f̂) + ζ0(1− s, χ−1, f̂) = ζ(1− s, χ−1, f̂),

and further shows that in this case this gives ζ(s, χ, f) as an entire function on C.
If χ is trivial restricted to A×K,1, it descends to the quotient (which is isomorphic to

R×>0), i.e. it factors through the absolute value map x 7→ |x| of which A×K,1 is the kernel.

Thus χ(x) = |x|λ for some complex number λ. Since we’ve assumed |χ(x)| = 1, we have∣∣|x|λ∣∣ = |eλ log |x|| = |eRe(λ) log |x|| = 1 for all x, i.e. Re(λ) = 0, so λ is an imaginary number.
In this case, if |x| = 1 then χ(tx) = |tx|λ = tλ and so our integrals above are

f(0)

∫ 1

0

ts+λ vol(K×\A×K,1)
dt

t
= f(0)

vol(K×\A×K,1)
s+ λ

and

f̂(0)

∫ ∞
1

t1−s−λ vol(K×\A×K,1)
dt

t
= f̂(0)

vol(K×\A×K,1)
s+ λ− 1

.

Thus

ζ0(s, χ, f) = ζ1(1− s, χ−1, f̂)− f(0)
vol(K×\A×K,1)

s+ λ
− f̂(0)

vol(K×\A×K,1)
1− s− λ

.

Replacing (s, χ, f) with (1− s, χ−1, f̂) and rearranging, keeping in mind that if χ(x) = |x|λ
then χ(x)−1 = |x|−λ, gives

ζ1(s, χ, f) = ζ0(1− s, χ−1, f̂) + f̂(0)
vol(K×\A×K,1)

1− s− λ
+ f(0)

vol(K×\A×K,1)
s+ λ

,

so

ζ(s, χ, f) = ζ0(s, χ, f) + ζ1(s, χ, f) = ζ1(1− s, χ−1, f̂) + ζ0(1− s, χ−1, f̂) = ζ(1− s, χ−1, f̂).

(Note we do not need to compute the volume, though one can and Tate does; for us it is
enough to see that it is finite, which is clear by compactness.)

In this case, our formulas above show that ζ(s, χ, f) is not entire, but has poles at s = λ
and s = 1− λ.

Corollary 5. Let χ be a character of K×\A×K, and S be a finite set of places including
the archimedean ones and any at which χ is ramified. Write LS(s, χ) =

∏
v 6∈S Lv(s, χ) for

the partial L-function away from s. Then LS(s, χ) extends meromorphically to the complex
plane, and satisfies the functional equation

LS(s, χ) = LS(1− s, χ−1)
∏
v∈S

γv(s, χv, ψv)

where the γv are the meromorphic factors from Proposition 2. Further LS(s, χ) is entire
unless χ(x) = |x|λ for some complex number λ, in which case it has poles at λ and 1− λ.
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Proof. Choose a Schwartz function f =
∏

v fv on AK . The proof of Proposition 1 shows that

LS(s, χ)
∏
v∈S

ζv(s, χv, fv) =
∏
v

ζv(s, χv, fv) = ζ(s, χ, f).

By Theorem 4, the right-hand side extends meromorphically to C, and by Proposition 2 so
do each of the local factors for v ∈ S on the left; therefore so does LS(s, χ), and the above
identity holds for all s except possibly at discrete poles. The functional equation for ζ gives

LS(s, χ)
∏
v∈S

ζv(s, χv, fv) = ζ(s, χ, f) = ζ(1− s, χ−1, f̂) = LS(1− s, χ−1)
∏
v∈S

ζv(1− s, χ−1v , f̂v).

On the other hand the local functional equation from Proposition 2 shows that the right-hand
side is equal to

LS(1− s, χ−1)
∏
v∈S

γv(s, χv, ψv)ζv(s, χv, fv),

so canceling the local factors we obtain the claimed functional equation.
If ζ(s, χ, f) is entire, then in order for LS(s, χ) to have a pole at s0 we would have to have

ζv(s0, χv, fv) = 0 for some v. But by choosing fv judiciously for each of the finitely many
places in v we can ensure that this does not happen: if fv has compact support and has
positive real part on a small neighborhood of x = 1, then the integral defining ζv(s0, χv, fv)
must have positive real part. Therefore in this case LS(s, χ) is also entire. If ζ(s, χ, f) has a
pole, by the proof of Theorem 4 this can only happen when χ(x) = |x|λ, in which case the
pole is at −λ or 1− λ; thus these are the only possible poles of LS(s, χ).

We would like to extend this result to all of L(s, χ), rather than just the factors away
from S. To do so, we need to define the local L-factors at v ramified or archimedean. At
the ramified places v, we make the simplest choice and set Lv(s, χv) = 1; for s real, we have
χv(x) = (x/|x|v)ε for some complex ε; since |χv(x)| = 1 by assumption, ε must be real, and
all ε ∈ R× give the same character so there are essentially only two possibilities, which we
write as ε = 0 or ε = 1. In this case we define Lv(s, χv) = π−(s+ε)/2Γ((s + ε)/2). Finally if
v is complex, χv is of the form |x|µv · (x/

√
|x|v)k for some complex number µ and integer k

(keeping in mind that |x|v is the square of the usual complex absolute value, so to recover
the sign we need to take the square root). Since this has absolute value 1, we must have µ
imaginary. In this case, we set Lv(s, χv) = 2(2π)s+µ+|k|/2Γ(s+ µ+ |k|/2).

Recall that ζv(s, χv, fv) may not be entire, and for all but finitely many v for a given
f =

∏
v fv will be equal to Lv(s, χv). Thus it is sometimes more natural to divide by

the L-factor: ζv(s,χv ,fv)
Lv(s,χv)

is entire. The proof is somewhat tedious and so omitted: in the
nonarchimedean case, one can decompose the integral by the absolute value, and then for
large values it vanishes by compact support and for small values it vanishes in the ramified
case and gives an explicit geometric series whose quotient by the L-factor is entire, and in
the archimedean case one studies the residues at the poles and verifies that they agree with
those of the L-factors.

If we take the functional equation from Corollary 5 and add the remaining L-factors, we
get

L(s, χ) = L(1− s, χ−1)
∏
v∈S

γv(s, χv, ψv)Lv(s, χv)

Lv(1− s, χ−1v )
,

10
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where L(s, χ) =
∏

v Lv(s, χv) over all v is the completed L-function. Define these factors on
the right to be

εv(s, χv, ψv) =
γv(s, χv, ψv)Lv(s, χv)

Lv(1− s, χ−1v )
.

In the unramified setting, since Lv(s, χv) = 1
1−χv(π)q−s , changing χv by multiplying by a

factor of | · |λv gives 1
1−χv(π)q−s−λ = Lv(s + λ, χv) since |π|v = q−1. Therefore changing χ by

a factor of | · |λ does not meaningfully change the result, and in particular we can assume
without any real loss that if χ(x) = |x|λ, as in Corollary 5, then λ = 0, i.e. χ is the trivial
character.

Theorem 6. The completed L-function L(s, χ) has analytic continuation to all of C if χ is
nontrivial, and meromorphic continuation to C with simple poles at 0 and 1 for χ trivial.
There is a function ε(s, χ) = A ·Bs for A ∈ C× and B ∈ R such that

L(s, χ) = ε(s, χ)L(1− s, χ−1).

Proof. We fix f and S as above; setting ε(s, χ) =
∏

v∈S εv(s, χv, ψv) gives the desired func-
tional equation. Since L(s, χ) and L(1−s, χ−1) are independent of ψ, so is ε(s, χ). It remains
to show that it is of the claimed form.

We do this by proving that each εv is of the claimed form; since ε is a finite product, the
result follows. By the definition of γv, we have

εv(s, χv, ψv) =
ζv(1− s, χ−1v , f̂v)

Lv(1− s, χ−1v )
· Lv(s, χv)

ζv(s, χv, fv)

for any Schwartz function fv onKv. In the nonarchimedean case, taking fv to be the indicator
function of Ov, which is the indicator function (up to some scalar) of the inverse different
ideal of Ov; then one can compute ζv(s, χv, fv) = AvLv(s, χ) for some constant Av ∈ C×, and
ζv(1 − s, χ−1v , f̂) = A′vB

−sLv(1 − s, χv), from which the claim follows. In the archimedean
case, choosing f(x) = e−πx

2
in the real case or e−2π|x|

2
in the complex case one can compute

explicitly that εv is constant (indeed, for good choices it will be 1).
Finally, the location of the poles follows from Corollary 5 and our assumptions on χ.
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