Counting points*
Avi Zeft

Our next goal is to understand reductions of Shimura varieties modulo p, and in particular
to count points of Shimura varieties over finite fields. To do so we first review the theory
of abelian varieties over finite fields, and then specialize to the case of Shimura varieties
and state the Langlands-Rapoport conjecture; finally we apply this to get a point-counting
formula.

1. ABELIAN VARIETIES OVER FINITE FIELDS

Our goal is to understand the category of abelian varieties (up to isogeny) over finite fields.
This is a semisimple Q-linear category; it turns out that any semisimple F-linear category
C' can be described by its set of simple objects, up to isomorphism, and their endomorphism
algebras.

In more detail: let C' be a semisimple F-linear category, i.e. an abelian category where
each hom-set is a finite-dimensional F-vector space, composition is F-bilinear, and every
object is a (finite) direct sum of simple objects, i.e. nonzero objects with no nonzero proper
subobjects. If e is a simple object and e — e is a morphism, it must be an isomorphism since
its kernel and image are subobjects of e. Therefore End(e) is a division algebra over F. If re
is the direct sum of r copies of e, then End(re) ~ M,(End(F)). For another simple object
¢/, by the same argument any nonzero map e — ¢’ must be an isomorphism, i.e. Hom(e, ¢’)
is either 0 or End(e) ~ E(€’), depending whether e and e’ are isomorphic. Therefore if
ey, ..., e, are distinct simple objects and x = rie; + -+ + 1€, Yy = $161 + - - - + Sp€,, then

Hom(z,y) = H M, ,,(End(e;)).

In particular every object is the sum of simple objects and every hom set is the product of
matrix algebras over endomorphism algebras of simple objects, which are division algebras.
Therefore if we can understand the sets X(C') of isomorphism classes of simple objects and
D(C) of endomorphism algebras of representative simple objects, then we understand C.
These are called the numerical invariants of C'; our first goal is to compute these invariants
for the category of abelian varieties up to isogeny over a finite field.

First, we want to understand the simple objects, i.e. simple abelian varieties over IF,,.
Recall that we have the Frobenius invariant A — 7,4 € End°(A), which is a Weil g-integer,
i.e. an algebraic integer whose image under any embedding Q[r4] < C has absolute value
¢'/?. We have a natural notion of conjugacy by varying embeddings: two Weil g-integers
m, ' are conjugate if there is an isomorphism Q[r] — Q[n'] sending 7 to 7’. It turns out
that this is in a certain sense a complete invariant: by a theorem of Tate, A — 7,4 is an
injective map from the set of isomorphism classes of simple abelian varieties over F, to the
set of conjugacy classes of Weil g-integers. Further work of Honda shows that in fact this is
a bijection. Writing W (q) for the set of Weil g-integers in Q and I for Gal(Q/Q), this is a
bijection B(AV(F,)) — T'\Wi(q).

*These notes are based on chapters 15-17 of [1].



1. ABELIAN VARIETIES OVER FINITE FIELDS

Now we understand the set of isomorphism classes of simple objects; what about their
endomorphism algebras? Each End’(A) is a division algebra over Q, and in fact over its
center F', which is generated by the Frobenius F' = Q[mr4]. These are classified by the short
exact sequence

0= Br(F) » P Br(F) =% Q/Z - 0

by class field theory, where Br(F') is the Brauer group and v ranges over places of F'. Thus
it suffices to specify inv,(End’(4)) at every place v.

Since A is determined by 74, we might hope to be able to give End’(A) in terms of
m4. First, we can note that m4 is in the center of the endomorphism ring, and it turns out
that it generates the center. To say more, as above this boils down to determining each
inv, (End”(A)) in terms of m4; and in fact this is possible: by the same work of Tate, it turns
out that inv,(End’(A)) is equal to 1 if v is real, %[F Q,] for v|p, and 0 otherwise,
and [D : F| = (2[%%}14)2.

Now that we understand AV°(F,) for every finite field F,, we'd like to be able to give a
similar description for AV°(F,).

Every abelian variety over IF_q has a model over some finite field, and isomorphisms over
F, descend to some finite field. If A is an abelian variety over F,, we can also understand
it as an abelian variety Ag_, over an extension Fym, with the Frobenius given by the mth

ordy (7rAIF )
gm’ _ ordy(ma) s -
ordy(g™) | ordu(gq) O independent

of m. In particular, if A is an abelian variety over f and A is a model over some finite field

F,, then sa(v) := 0122 W(A o) does not depend on the model A or the chosen finite field F,,.

Similarly, to understand Weil g-numbers as ¢ varies, observe that = — 7" gives a ho-
momorphism Wi (q) — Wi(g™) for every ¢ and m, so we get a direct system of W;(¢™) and
can define W; = hA’lm Wi(¢™). For any m € Wi, we can find some ¢" such that 7 has a
representative m,, in Wi(¢™); write Q[r] for the smallest field over Q generated by some
representative m,, of .

In the above case, 74, gives a representative for some m4 € Wi, and for any embedding
Q[r4,] = Q the image of 74,, up to the action of I', is independent of the model Ay, and
so we can view it as an embedding of Q[r]. The result of Honda and Tate then shows
that the same thing holds over F,: A ~ 7,4 defines a bijection Z(AV"(F,)) — T'\W;, and
when A is simple End’(A) has center F = Q[r4] with inv,(End’(A)) equal to & for v real,
sa(v)[F, : Qp] for v|p, and 0 otherwise for v places of F.

Ultimately, we want to end up with some more general category subsuming abelian
varieties over F_q, extending this property that the simple objects are in bijection with Galois
orbits on some finitely generated Z-module. (Eventually we should be able to find some
natural subcategory whose numerical invariants coincide with those of AV°(F,).)

One way to generate such categories is through representations of tori. For any torus
T over a field F split by a (possibly infinite) Galois extension L/F with Galois group I' =
Gal(L/F), a representation of T" on an F-vector space V is equivalent to giving an X*(7')-
grading V(L) = @, c x- () Vx of V(L) such that oV =V, for all 0 € I and x € X*(T), ie.
over L every representation decomposes into y-isotypic components, and if the representation

power: 7wy, = 7. Therefore for any place v the ratio
q




1. ABELIAN VARIETIES OVER FINITE FIELDS

comes from one over F' then they satisfy this Galois structure and so we can recover the
original representation over F. In particular, if L = F we conclude that the category of
representations Repp(T') of T' over F' is semisimple, with isomorphism classes of simple
objects given by Galois orbits I'\X*(7T"). We can also compute the endomorphism algebras:
for x € X*(T'), the corresponding representation V, has dimension given by the size of the
Galois orbit of x, and End(V,) ~ F(x), the subfield of F fixed by the subgroup of I fixing
X-

Since we can find a torus 7' with character group X*(7") isomorphic to any fixed finitely
generated (continuous) Z[[']-module M, we can find a semisimple F-linear category C with
%(C) =T\M for any such M. However this is not completely satisfying for our case: often
our endomorphism algebras for abelian varieties were noncommutative, and in this case all of
the endomorphisms algebras F'(x) are commutative. To go further, we need a more general
notion.

Fix a field F' of characteristic 0, and let L/F be a Galois extension with Galois group
[' and G an algebraic group over F. For us, an extension of I' by G(L) is a short exact
sequence

l1-G(L)—-E—-T—>1

compatible with the Galois action, i.e. if e, € E maps to o € I" then there is some g € G(L)
such that

6Ute;1 = g(mf)g’1

for all t € T(F). This defines an intertwining action by which we can define the split
extension Fg = G(L) x I

We say that an extension F is affine if its pullback to some open subgroup of I' is split.
This is equivalent to requiring that every o lying in some open subgroup of I' has a preimage
e, € E such that e,, = e e,. In this case we say that G is the kernel of the extension.

If G =T is commutative and we have an affine extension

1-T—>F—->1—1,

then we can restrict to some open subgroup of I'" in which e,, = e e, up to an element
of T(L), which we denote by d(o,7); this gives a 2-cocycle d : I' x ' — T(L), and the
assumption that E is affine implies that we can choose d to be continuous. Therefore any
affine extension F by a torus T gives a class cl(E) € H*(F,T).

In fact, this class gives an element of the Brauer group Br(F(x)) for every x € X*(T),
with F(x) the fixed field as above. To see this, first write Br(F(x)) as H*(F(x),Gn), its
definition. By Shapiro’s lemma, this is isomorphic to H?(F,Resp(y)/r Gm). But we have a
homomorphism of algebraic groups T' — Resp(y)/r G dual to the morphism on character
groups X*(Resp(y)/r Gm) = Z[I'/T(x)] = X*(T) defined by > _n,o +— > n,(cx), and on
cohomology this induces a homomorphism H?(F,T) — H?(F,Resp(y)/r Gm) =~ Br(F(x)).
Thus cl(E) gives an element of Br(F(x)), and thus an equivalence class of central simple
algebras over F'(y).

A homomorphism ¢ of affine extensions is a homomorphism of the corresponding exact
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sequences, i.e. a commutative diagram

1 — G1(L) > By > I > 1
Lok
1 —— Gy(L) > Fo > I > 1

such that the restriction of ¢ to G (L) descends to a homomorphism G;(L) — G3(L) coming
from a homomorphism of algebraic groups over L. We can even naturally define a 2-category
structure: a morphism ¢ — ¢’ of homomorphisms F; — F» of affine extensions is an element
g € Go(L) such that ad(g) o ¢ = ¢/, i.e. for every e € E; we have go(e)g~! = ¢'(e).

For an F-vector space V', we abbreviate the split extension by GL(V'), Eqrv), to Ey. A
representation of an affine extension F is a homomorphism of affine extensions £ — Ejy .

In the case where I/ = E is a split extension, this is equivalent to giving a representation
of G on V: the functor Rep(G) — Rep(E¢) is an equivalence of categories. This is proved
using the fact that H(I', GL(V)) = 1.

We now come to the main point: representations of affine extensions by tori give us the
desired kind of generalization of representations of tori.

Proposition 1.1. Let L/F be a Galois extension with Galois group I, T be a torus over
F split by L, and E be an affine extension by T over L/F. Then Rep(FE) is a semisimple
F-linear category with Y(Rep(E)) ~ I'\X*(T). Further, for V, the representation of E
corresponding to x € X*(T), the endomorphism algebra End(V,) has center F(x), and its
class in Br(F(x)) is the image of cl(E) under the homomorphism defined above.

Proof. In the case where F is split, cl(F) is trivial and this is just the case of representations
of tori discussed above. In general, a representation of E is a homomorphism of affine
extensions £ — FEy = Egv), which restricts to a homomorphism of algebraic groups
¢l : T — GL(V), the category of which we know is semisimple. If @|r >~ ¢ @ ¢, since
Ey is split it follows that ¢ composed with the inclusion T" < FE is a direct sum ¢ & ¢
composed with Galois action on each factor separately, and so also decomposes as a direct
sum, i.e. Rep(F) is semisimple, and ¢ — ¢|r gives a map Rep(F) — Rep(T") which restricts
to simple objects ¥(Rep(£)) — X(Rep(T)) = I'\X*(T). Every simple representation V, of
T lifts to a representation of E by taking the pushout, and if two simple representations ¢, ¢’
of E have the same image in X(Rep(7)), i.e. the same restriction to 7', both factor through
the pushout and so by simplicity must be the same, i.e. this gives a bijection on simple
objects. Finally, if V corresponds to the character x of T, the corresponding representation
¢ : E — Ey, of E is given by the pushout and has endomorphism algebra given by the
subalgebra of F'(x)[GL(V,)] commuting with ¢. Over a sufficiently large field this will split,
and so its class in the Brauer group is determined by the Galois action, which is given by
the Galois action on x as described above; therefore it has the corresponding Brauer class,
the image of cl(E) in Br(F(x)). O

In fact we actually want something slightly more general: we want to allow the kernel
to be not just tori but protori, i.e. limits (inverse limits) of tori. If 7" = lim7; over a
field F, then X*(T') = lim X “(T;), and T — X*(T) defines an equivalence of categories
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1. ABELIAN VARIETIES OVER FINITE FIELDS

between the category of protori and the category of torsion-free Z-modules with a continuous
action of I' = Gal(F/F), where X*(T) is torsion-free because it is a colimit (direct limit)
of finitely generated free Z-modules and therefore flat, and flat Z-modules are torsion-free,
and continuous means every element is fixed by an open subgroup. An affine extension with
kernel T is a short exact sequence

1—-T(F)—=E—-T—=1

whose pushout to each

1= T(F)—=E —T
by T(F) — T;(F) is an affine extension in our previous sense; a representation of such an
affine extension is as above.
Suppose we have a commutative diagram of fields

L ——1I

]

Fe— F
with I' = Gal(L/F), I'" = Gal(L'/F"). An L/F-affine extension
1-GL)-E—-T—=1
with kernel G over F' yields an L'/F’-affine extension
1-GL)—FE —-T"=>1

with kernel Gz by pulling back along the restriction map IV — I' sending o — o|; and
pushing out along G(L) — G(L').

For example, let Q)™ be the maximal unramified extension of @Q,, and let L, be the
unique subfield of Q)™ with [L, : Q,] = n, and I', = Gal(L,/Q,). For every 1 <i <n
we can define a Q,-algebra D;,, as L,eq @ Lpe1 @ --- @ Lype,—1 as a Qp,-vector space, with
multiplication determined by e;c = o/ce; for ¢ € L and o the Frobenius element in T',,, and
ejep =€ if j+1<n—1andeje = 7Ti€j+l_n for j + 1 > n, where 7 is a uniformizer. We
can identify L with a subfield of D;,, by setting eg = 1, e; = a, and e; = @/ with a™ = 7.
Every central division algebra over Q, is isomorphic to some D;,, for (i,n) relatively prime.
We look in particular at D, ,. By Proposition 1.1, if we can find an affine extension E by
a torus whose image in the Brauer group in some extension agrees with that of Dy, (i.e. is
%), then we can interpret D, as the endomorphism algebra of some representation of this
extension.

Such an extension is given by

1—-L— N(L;)—T,—1,

where N (L)) is the normalizer of L in D, and is given by the disjoint union of LXa’ over
0 <i<n-—1. Thisis an L,/Q,-affine extension with kernel G,,. Pulling back by the
restriction map I' = I', and pushing out by L, — Q)™ gives an affine extension

1= Q"™ — D, — Gal(Q™/Q,) — 1

5



1. ABELIAN VARIETIES OVER FINITE FIELDS

with kernel Gy,. A representation p : D, — Ey = GLguu (V) x Gal(Qy"/Q,) of D, is a
vector space V over Q" with a suitable action of D,; the image of (1,a) in D, under p
is some pair (F,7), with F' an automorphism of V' commuting with the Galois action of
7. Since 7 comes from the image of (1,a), which acts on L,, by the Frobenius o, its image
in Gal(Qy™/Q,) is precisely o, so the structure on V' is just a o-linear automorphism F'.

Tensoring with L = @r gives an isocrystal, i.e. an L-vector space equipped with a o-linear
automorphism F. Over L, simple isocrystals are classified by rational numbers, by taking
the local invariant of the endomorphism algebra, which will be a division algebra over L
which are classified by rational numbers. In this case, our isocrystal can be decomposed as
a sum of simple isocrystals E* with \ € %Z.

There is a canonical section of N(LX) — T, by sending ¢ + a' for 0 < i < n — 1, which
gives a canonical section of D,, — T'.

For varying n, we get a homomorphism D,,, — D,, whose restriction to the kernel G,,
is multiplication by m. Taking inverse limits gives a Q)™ /Q,-affine extension D with kernel
G = lim Gy, with X*(G) = lim 17)7 = Q. There is a natural functor from Rep(D) to the
category of isocrystals, which 1s faithful and essentially surjective but not full. We call D
the Dieudonné affine extension.

We now want to pick out a particular affine extension. Let W (p") be the subgroup of Q"
generated by the Weil p"-integers Wi (p"), and let W = @n W (p™). This is a free Z-module

of infinite rank and a continuous action of I' = Gal(Q/Q). As above, for 7 € W write Q[n]
for the smallest field generated by a representative m, of 7; if 7 is represented by 7, and for
some embedding into C it has absolute value p"™/2, we say that it has weight wt(w) = m,
and for any prime v of Q[r] above p we write

~ordy(m,)
ST RrD)

which as above is independent of the representative m,.

Theorem 1.2. Let P be the protorus over Q with X*(P) = W. Then there exists an affine
extension

1-PQ —-P-T—1,

unique up to isomorphism, whose representation category satisfies X (Rep(P)) ~ I\W, and
for each m € W any representation V. corresponding to m has endomorphism algebra D with
wt

center Q[r] and inv,(D) is 5" if v is real, s;(v)[Q[7], : Qp] if v|p, and O otherwise.

Proof. The description of the invariants of D defines a class ¢(7) in Br(Q|x]). Thus to prove
the result it suffices to show that there exists a unique class in H*(Q, P) mapping to c(m)
for every m € I'\WW; then this class defines an affine extension 8 with kernel P, whose
simple representations are given by Galois orbits of the simple representations of P, which
by definition is I'\IV.

To see that there exists such a class, we want to find a unique preimage in H?(Q, P)
of [T erw c(m) in JT cpw Br(Q[n]). We can expand by class field theory: for any finite
extension L/K of number fields and algebraic protorus 7' over K, we have a short exact
sequence

0—=L—>A, - L\A, =1

6



1. ABELIAN VARIETIES OVER FINITE FIELDS

and therefore an exact sequence
1 —-T(L)— T(AL) — T(L\AL).

When HY(T, L) = 0, which will occur for both K = Q, T = P and K = Q[r]|, T = Gy, this
in fact extends to a short exact sequence, i.e. the last map is surjective. In this case taking
Galois cohomology for G = Gal(L/K) gives an exact sequence

0— H*G,T(L)) — H*G,T(AL)) @HZ (Gal(L,/Knw), T(Ly)) = -+

and we can take the limit over L to get infinite extensions. In our cases, using the map
H?*(Q, P) — H*(Qln],G,,) we get a commutative diagram with exact rows

0 —— H*(Q,P) —— @, H*(Q,, P,)

| |

0 — H*(Q[r],Gn) — B, H*(Q[7]u, Gr) —— Q/Z —— 0

The image of H*(Q, P) in @, H*(Q., P,) is exactly the set of classes whose image in Q/Z
vanish, which occurs for all our classes ¢(r), so it suffices to check that each ¢(m), lifts. For
v real, P, is just determined by the weight so clearly this is possible uniquely; for v t p there
is nothing to say, so it suffices to check the conditions over p. If we view s,(v) as a function
of m for a fixed v, we just need to know that it is well-defined independent of the model,
which we know from the discussion above; then picking any representative, this is the order
of the Galois orbit of 7, up to rescaling and therefore is the image under the 7-map of some
class in H*(Q,, P,) which does not depend on . Combining all the places together gives
the result. O

This representation category Rep(J3) has numerical data strongly reminiscent of that of
AVO(E). In particular, the isomorphism classes of simple objects, which we can identify
with ['\I¥/, has a subset given by the orbits ['\I¥; of 7 coming from honest Weil g-numbers
for some ¢. This defines a full subcategory of Rep(*l) consisting of objects whose simple
summands correspond to m € ['\WW; € T'\W, which we call the category of fake abelian
varieties; notice that it is a semisimple Q-linear category with the same numerical data as
AVO(E). More generally, we call representations of 3 fake motives over Fq, corresponding
to how abelian varieties over F, generate the category of motives.

For each prime ¢ # p, we can define a local form B(¢) of PB(¢) as follows. Let w, be a
prime of Q over ¢, and write Q, for the image of Q; in the completion of Q at w,. We get
a closed subgroup I'y = Gal(Q,/Q) of T' = Gal(Q/Q) corresponding to the commutative
diagram of fields

@;)@|

4

We can obtain from P a Q,/ Qg—a@e extension
I'y — I" and pushing out along P(Q) — P(Q,).

§=

(¢) by pulling back by the restriction map

7



1. ABELIAN VARIETIES OVER FINITE FIELDS

Proposition 1.3. There is a continuous section (; : I'y — P(¢) in the short exact sequence
1— P(@Q) = PB) =T, —1

defining B ().

Proof. This is the claim that the cohomology class of B in H?(Q, P) maps to zero in
H?(Qy, P). From the commutative diagram in the proof of Theorem 1.2, this is true when
it has trivial image in every place v of Q[r| over ¢ for every m € I'\IW/; this image is just
¢(m), = inv, (D) for D the corresponding endomorphism algebra to 7, which is always 0 for
v1p, so if v|¢ # p the result is immediate. ]

Let p : B — Ey be a fake motive. Pulling back along I'y — I' and pushing out along
(-completion applied to the restriction of p to P, i.e. the commutative diagram

P(Q — P(Q))

| L

GL(V(Q)) — GL(V(Q))

gives a homomorphism of affine extensions p(f) : P(¢) — By, = GL(V(Q,)) x 'y, which is
just a representation of B(¢) on V(Qy).
Fixing a homomorphism ¢, : I'; — B(¢) as in Proposition 1.3, we can take the composition

r, &% B(0) LN GL(V(Q,)) x Ty. Projecting onto the second factor gives the identity
since (, is a section; write (e,,0) for the image of o € I'y. Since each of (;, and p(¢)
are homomorphisms, we have (e,,,07) = (€,,0) - (e+,7) = (e,0€,,07) and so the e, satisfy
es00¢, = €4y for 0,7 € Ty, and so we get a continuous action of I'; on V(Q,) by o-v = e, (ov).
Therefore Vy(p) = V(Q,)* for this action defines a Q-structure on V(Q,), giving us a functor
p — Vi(p) from the category of fake motives over F, to vector spaces over Q.

Working similarly, one can define a functor sending p to a free module Vf (p) over AI},
the adeles away from oo and p, such that Vy(p) =V} (p) Rar Qy for all £ # p, co.

We would like to expand to the prime p, which the above methods omit. To do so, what
we want to assign to each fake motive is an isocrystal. Choose a prime w, of Q over p, and
similarly write @p for the image of @p in the completion of Q at wp; also write Q" for its
image in this completion. Then I', = Gal(Q,/Q,) is a closed subgroup of I' = Gal(Q/Q)
and I')™ = Gal(Q,™/Q,) is a quotient of I',. One can similarly define B(p) and P (p)"™* by

the same procedure as for /.

Proposition 1.4. The affine extension B(p) arises by pullback and pushout from B(p)“"".
Further, there is a homomorphism of Q;‘"T/@p—aﬁine extensions D — P(p)"™" whose re-
striction to the kernels G — Pg, corresponds to the map on characters W — Q sending
T sp(w,).

Proof. The first statement reduces to the statement that the image of the cohomology class
of B in H*(T,, P(Q,)) lifts to H*(T', P(Q4™)), which follows (I think) from Shapiro’s lemma.
The second statement is more straightforward: the map of extensions corresponds to a map
on cohomology, which arises from the map of characters, and so we just need to know that
the Galois actions match up, which is clear from the invariance of the s,. O

8
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A fake motive p : P8 — Ey gives rise to a representation of B(p) just as for ¢; doing
the pullback-pushforward process (in reverse) gives a representation of P (p)*™". Composing
with the homomorphism D — PB(p)"™ gives a representation of D, which we know is the
same thing as an isocrystal D(p).

Given an abelian variety of CM type over Q, we saw that it has good reduction and
therefore defines an abelian variety over ]I‘Tq. In fact it also defines a fake abelian variety, i.e.
a representation of P with simple summands corresponding to Weil ¢-integers for some gq.
For any abelian variety A of CM type (E,®) over Q, let T = Resg /@ G; then @ defines a
cocharacter pug : G, — T'. Thus we are in the following more general situation, which will
be useful later:

Proposition 1.5. Let T be a torus over Q split by a CM field, and let u be a cocharacter
of T'" such that p + [ is defined over Q. Then there is a homomorphism ¢, : B — Er
well-defined up to isomorphism.

Proof. The data of T and p corresponds to an abelian variety A with T acting on Hy(A, Q).
By the equivalence of categories between AV’(F,) and fake abelian varieties, there is some
¢, B — Ey corresponding to A, which factors through the action of T'. O]

Now in our case T acts naturally on V = H;(A,Q), and composing with 8 — Ep gives
a fake abelian variety p : B — Ey such that Vy(p) = (H (A, Q) ® Q)™ = Hi(A, Q) and
D(p), the isocrystal corresponding to composing p with the map D — ‘B, is isomorphic
to the Dieudonné module of the reduction of A modulo p. This essentially follows from
the fact that the invariants of End(A) (or equivalently the endomorphism algebra of the
corresponding fake motive) are (uniquely) compatible with the description of the Frobenius

of A from the Taniyama-Shimura formula.

2. GOOD REDUCTION OF SHIMURA VARIETIES

Since we've seen that a Shimura variety Shy = Shgx (G, X) has a unique canonical model
over its reflex F = E(G, X), we now identify Shy with its canonical model and speak of it
as a variety over FE.

When the Shimura variety has a moduli interpretation over C, e.g. as a moduli space
of abelian varieties with some additional structure, then this description descends to Q
since the data themselves do. For example, if Shx is the Siegel modular variety attached
to a symplectic space (V,v), the Q-points Shx(Q) classify isomorphism classes of triples
(A, s,nK) where A is an abelian variety over Q, s is a rational multiple of a divisor up to
equivalence (thus corresponding by the cycle class map to a Hodge tensor in H?(A, Q) and so
a polarization over C) or more precisely an element of NS(A) ® Q containing a Q*-multiple
of an ample divisor, where NS(A) is the Neron-Severi group of A, i.e. divisors modulo
algebraic equivalence, and nK is a K-orbit of isomorphisms V(A;) — V(A) sending ¢ to
an A -multiple of (the pairing corresponding to) s.

For more general Shimura varieties, where the proof of the existence of the canonical
model does not pass through the moduli interpretation, the situation is more complicated

and no good description of Shg(Q) is known.
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We would like to be able to describe Shi (L) for fields all the way down to E, at least
when Shg(C) has a moduli interpretation (for example when (G, X) is of abelian type).
However first we encounter another problem: for A an abelian variety over Q, suppose that
we know that o A is abstractly isomorphic to A for every o € Gal(Q/E). Does it follow that
A is defined over E?

If we choose for each ¢ an isomorphism f, : 0 A — A, for these to form a descent datum
we need them to satisfy the cocycle condition f,oo f; = f,-. An obstruction to the existence
of such a cocycle lies in the second cohomology set H?(Gal(Q/E), Aut(A)).

To avoid this issue, we could hope that Aut(A) is trivial, at least if we require the
automorphisms to preserve the extra data of A classified by Shg, if K is sufficiently small.
If the additional axiom (5) holds, i.e. the center Z(Q) is discrete in Z(Ay), then this is true:
this gives a sort of rigidity condition. In general however this may fail. For example, in
the Siegel case the center is G, and so this axiom holds, and so (for K sufficiently small)
for any field L containing F = Q we get a moduli description of Shx (L) as classifying
triples (4, s,nK) with the same description as for Q, replacing Q by L. On the other hand,
for Hilbert modular varieties, where G = Resp/g Ma(F') for some totally real field F' and
so its center is Resp/g Gm, and so axiom (5) fails: F™ is not discrete in Af ; by strong

approximation. In this case we can describe Shy(Q) as above, but all we can say for number
fields is Shy (L) = Shg (Q)“a(@/ D),

Ultimately we’d like to be able to talk about points of Shimura varieties not just over
fields of characteristic 0 but also characteristic p, in particular finite fields by reduction from
the case of number fields. To get a good notion of reduction of Shimura varieties, we need
to make sure that our subgroups K are compatible with the extension-reduction process:

Definition 2.1. Let G be a reductive group over Q (or even over Q,). A subgroup K C
G(Q,) is called hyperspecial if there exists a flat group scheme G over Z, such that Go, = G
(i.e. G is an extension of G to Zy,), Gr, is a connected reductive group, which automatically
has the same dimension as G by flatness (this is the good reduction condition), and G(Z,) =
K (i.e. K is compatible with this process).

For example, let G = GSp(V, ¢), as in the Siegel case. Fix a Z,-lattice in V(Q,), and let
K, be the stabilizer of A. Then K, is hyperspecial if the restriction of ) to AX A CV xV
takes values in Z, and is perfect, i.e. induces an isomorphism A — AY. The reduction
modulo p gives a nondegenerate alternating pairing A/pA x A/pA — F,, with Gg, the group
of symplectic similitudes of this pairing.

In the PEL case, where we have a semisimple (Q-algebra with involution B, in order for
there to exist a hyperspecial subgroup B must be unramified over p, i.e. B ®qQ, must be a
product of matrix algebras over unramified extensions of Q. In this case there is a similar
description to the Siegel case.

By results of Tits, it is known that there is a hyperspecial subgroup in G(Q,) if and only
if G is unramified over Q,, i.e. quasisplit over Q, and split over an unramified extension.

For the rest of this section we fix a hyperspecial subgroup K C G(Q,); for K? a compact
open subgroup of G(A%), we write K = K? K, and write Sh,(G, X) for the limit of Shx (G, X)
with K of this form, i.e. Sh,(G,X) = m,  Shirg, (G, X). This Shimura variety Sh,(G, X)
carries an action of G(A%).

10



3. THE LANGLANDS-RAPOPORT CONJECTURE

There are two essential reasons why a Shimura variety may fail to have good reduction
at a prime dividing p: either the reductive group in question may be ramified at p, or p may
divide the level (i.e. K is badly behaved at p). For example, a Shimura curve is defined by
a quaternion algebra B over Q; if p divides the discriminant of B, then the Shimura curve
will have bad reduction at p, or the modular curve I'g(N)\H will have bad reduction at p|N.

Let E = E(G,X). We say that Sh,(G, X) has good reduction at a prime p of E if the
inverse system Sh,,(G, X) = (Shgrk, (G, X)) kr extends to an inverse system of flat schemes

Sy = (Sk») kv over the ring of integers O, of the completion E, of E at p with the action of
G(A%) on Sh, extending to an action on S, whose reduction modulo p is an inverse system

of varieties Sh,(G, X) = (Shgrk, (G, X))xr over the residue field k(p) of @p, such that for
K? D> K'P sufficiently small the corresponding map

%K’PKP — S_thKp

is a finite étale map of smooth varieties.

Generally, a variety over FE, may fail to have good reduction to a smooth variety over
k(p) (e.g. for elliptic curves) and if it does the reduction is generally not unique, with no
obvious way to distinguish between them; for example, given one reduction we can blow up
at a smooth subvariety of the closed fiber to obtain another. We say that a variety V' with
good reduction corresponding to an extension V over E, has canonical good reduction at p

if for any formally smooth scheme T over @p, the natural map
Homg (T,V) — Homg, (Tg,, V)

is an isomorphism. We can apply this in particular with V' = Sh,, and V = §,; this is a limit
of schemes étale over a smooth scheme and so formally smooth, and so this characterizes the
model S, uniquely up to unique isomorphism by the Yoneda lemma.

The following theorem is due to Mumford in the Siegel case, various authors indepen-
dently including Kottwitz in the PEL case, and Vasiu and Kisin in the Hodge case, from
which the abelian case follows. The existence of good reduction for hyperspecial subgroups
was first conjectured by Langlands; the notion of the canonical reduction was conjectured
by Milne.

Theorem 2.2. Let (G, X) be a Shimura datum of abelian type, and p be any prime other
than a finite set of primes depending only on (G,X), K, a fixed hyperspecial subgroup of
G(Q,), and Shy(G, X) the corresponding inverse system of varieties over E = E(G,X).
Then Sh,(G, X) has canonical good reduction at every prime p of E dividing p.

3. THE LANGLANDS-RAPOPORT CONJECTURE

We next want to give a description of the points of reductions of Shimura varieties. This is
conjecturally possible by work of Langlands and Rapoport.

We start by analogy in the complex case. Fix a Shimura datum (G, X) satisfying the
additional axioms (4), (5), and (6). If we take the limit over K? of complex points we get
as schemes over C

Shy(C) = Sh(C)/ K, = lim Sy, (C).

11



3. THE LANGLANDS-RAPOPORT CONJECTURE

For each z € X, let I(x) C G(Q) be the stabilizer of z, and write X?(z) = G(A}), X,(v) =
G(Q,)/ Ky, and S(x) = I(x)\XP(z) x X,,(z) (the sets XP(z) and X,(x) clearly do not depend
on x, but this will be notationally convenient for the analogy). It is easy to see that there is
a bijection

|| S(z)— Sh,(C)

zeG(Q\X

by expanding;:
$h,(C) = GIQ\X x G(A)/K, = GQ\X x X" x X,

(since we have the additional axioms), from which the decomposition is immediate. This
has a modular interpretation: for example, for (G, X) of Hodge type, the set S(x) classifies
the isomorphism classes of triples (A, (s;)nK) with (A, (s;)) isomorphic to a fixed abelian
variety with tensors.

The idea of Langlands and Rapoport is that ﬁp(lﬁTp) should have a similar description,
where we replace the indexing set G(Q)\X, which in the complex case classifies complex
abelian varieties with tensors, with a set of isomorphism classes of homomorphisms ¢ : ¢ —
Eq. Note that for any faithful representation G — GL(V') this gives a homomorphism
P — GExI = GL(V) xT' = Ey, i.e. a fake motive; this is also equipped with additional
data, namely the representation G <— GL(V") corresponds to tensors ¢; for V' such that G is
the subgroup of GL(V) fixing the ¢;. Thus we can think of ¢ as a fake motive with tensors,
modulo representations of G, analogous to the data classified by G(Q)\X. We are interested
in isomorphism classes of homomorphisms 8 — F¢; recall that an isomorphism of such
homomorphisms ¢, ¢ is given by g € G(Q) such that ¢'(a) = gp(a)g™" for all a € P.

For a fixed ¢ : P — FEg, we now want to define a set S(¢) analogous to S(z) above. We
first define the analogue I(¢) of I(z): this is the stabilizer of ¢, i.e. the subgroup of G(Q)
consisting of g such that ad(g) o ¢ = ¢, i.e. ¢(a) = go(a)g™! for every a € P.

Next, we define X?(¢). For each prime ¢ # p, 0o, as in section 1 choose a prime wy of Q
over ¢ and define Q, and I’y C I" as there. We can view I'y as a Q,/Q-affine extension with
trivial kernel, i.e.

111y, —=1y—1,

and we get a canonical morphism of affine extensions & : I'y — Eg(¢) = G(Q,) x I'; sending
o +— (1,0). On the other hand ¢ gives a homomorphism ¢(¢) : P(¢) — Eg(¢), and we
have a morphism ¢, : I'y — B(¢) from section 1 with which we can compose to get a second
homomorphism ¢(¢) o {; : Ty — P(¢). We can then look at 2-morphisms between these
homomorphisms, all of which are isomorphisms, and so we define

Xi(¢) = Tso(&, ¢(£) 0 ),

which carries an action of G(Qy) on the right and of I(¢) on the left. Elements of this set
correspond to the data of the level structures n: in particular, picking a faithful representation
p: G — GL(V) composing with £ and ¢(¢)o(, gives X,(¢) as a subset of Iso(V (Qy), Vi(po@)).
By choosing the (; judiciously (as to define V;’ (p) in section 1), we obtain compact
subspaces and so we can take the restricted product X?(¢) over all ¢ # p,o0. If it is
nonempty, this gives a principal homogeneous space for GG (A’}) acting on the right.

12



3. THE LANGLANDS-RAPOPORT CONJECTURE

At p, we similarly choose a prime w, of Q over p and use the notation from section
1. From Proposition 1.4, we get a map D — B(p)"™", and composing with ¢(p)™" gives a
map D — G(Qp™) x I')*. This composite factors through D, for some n. The Frobenius
o € I')™, sending & — 2 on the residue field, lifts uniquely to D; let (b, o) be its image in
G(Qpr) x ™. By the definition of the semidirect product, projecting onto the first factor
gives an element b = b(¢) which is well-defined up to o-conjugation, i.e. any different choice
of b is given by g~ lbog for some g € G(Qp™). If p: G — GL(V) is a faithful representation,

—

then the isocrystal D(po¢) is the vector space V (L), where L = Qur, with the o-linear map
F given by bo, i.e. v+ bov.

Recall that the Shimura datum (G, X) defines a G(Q)-conjugacy class ¢(X) of cocharac-
ters of G. We can transfer this to a conjugacy class of cocharacters of G@p; since we assume
G contains a hyperspecial group, it splits over Q)™ and so this class contains an element p
defined over Q™. Let

Cp=G(OL) - pulp) - G(OL),

where O, = W(F,) is the ring of integers of L and G(Op) should be interpreted as G(O;,)
for an extension G of G as in the definition of a hyperspecial subgroup K,. We can then
define

Xp(¢) = {9 € G(L)/G(OL)lg™"b(9)g € C,}.
The automorphisms I(¢) of ¢ act naturally on this set, since they are the g € G(Q) such

that gog~! = ¢ and so act on X,(¢) simply by multiplication. We also have a Frobenius
action: for g € X,(¢), define

®(g) = b(9)ab(¢)a” - o™ b(¢)o™y,

where m = [E, : Q,]. For example, if m = 1, so ®(g) = bog, we have ®(g)"'0P(g) =
g to" b tbbog = g 'otbog, which is in C, because o fixes X,(¢).
We can now define S(¢), formally parallel to the complex case:

S(¢) = H@NXP () x Xp(0),

with the action of I(¢) on both factors as described and an action of G(A%) on the right
through the action on X?(¢), as well as the action of ¢ via its action on X,(¢).

We want to restrict to certain “admissible” ¢. This translates to a local condition at
each place together with a global condition.

We first treat the condition at infinity. Let E., be the extension

1-C* = FEy—Tyx—1

given by the quaternion algebra H = C* LU C*j, where 'y, = Gal(C/R), and regard it as an
affine extension with kernel G,,. Pulling back and pushing out as usual gives a C/R-affine
extension

1 = P(C) — P(oco) = 'y — 1.

One can check that these extensions have corresponding cohomology classes, which implies
that there is a homomorphism (., : Es — P(00) whose restriction to the kernels G, — Pc
corresponds to the map on characters 7 +— wt (7).

Write ¢ for complex conjugation, the nontrivial element of I'y.
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3. THE LANGLANDS-RAPOPORT CONJECTURE

Proposition 3.1. For any x € X, the formulas

SZ(Z) = (wX(Z)v 1>’ 5:6(]) = (:U%(_l)_lvb)

define a homomorphism E., — Eg(o0). Changing x does not change the isomorphism class
of the homomorphism.

Proof. Since E,, = C*UC*j, these formula are independent and together define a homomor-
phism as claimed, so the only thing to change is that the isomorphism class is independent
of x. Only the second depends on x and only through pu,; all u, are conjugate, so this is
immediate. [

Write £x for the isomorphism class of homomorphisms E, — E¢g(00) of Proposition 3.1.
On the other hand we can construct a morphism E,, — Eg(oc0) by composing (o : Es —
PB(oo) with ¢(c0) : P(oo) — Eg(oco). The condition at infinity is that this composition
should give an element of {x.

The other local conditions are simpler: the condition at ¢ is that X,(¢) should be
nonempty, and the condition at p is also that X,(¢) be nonempty (though these are de-
fined differently).

Finally, we also want ¢ to satisfy a global condition: let v : G — T be the quotient
of G by its derived group G9. From X we get a conjugacy class of cocharacters of G,
which descends to a well-defined cocharacter p of T'. By our assumptions on (G, X), T and
u satisfy the conditions of Proposition 1.5, i.e. u + @ is defined over Q and T is split by
a CM field; thus there is a homomorphism ¢, : ¥ — Ep. On the other hand composing

with v gives another homomorphism 33 2 Ec % Egp; the global condition is that these be
isomorphic, i.e. v o ¢ ~ ¢,. If ¢ satisfies this condition and all the local conditions, we say
that it is admissible.

We can now define the Langlands-Rapoport set LR(G, X): this is the disjoint union of
S(¢) over all isomorphism classes of admissible homomorphisms ¢ : 8 — Eg. This set
carries commuting actions of G/(A’;) and ® coming from the actions on each S(¢).

Conjecture 3.2 (Langlands-Rapoport). Let (G, X) be a Shimura datum satisfying the ad-
ditional azioms (4), (5), (6) such that G is simply connected, and let K, be a hyperspecial
subgroup of G(Q,). Let p be a prime of E(G,X) over p such that Sh, has canonical good
reduction at p. Then there is a bijection of sets

LR(G, X) — S5,(G, X)(F})
compatible with the actions of G(A}) and ®.

It is possible to make more general conjectures, more complicated to state but not essen-
tially deeper, without the axioms (4), (5), and (6). One can also remove the assumption that
G is simply connected, at the cost of replacing the notion of admissible homomorphisms
with a more complicated one, called special homomorphisms. However it is known (due to
Milne it seems) that the conjecture for G4 simply connected implies the general case. One
can also generalize to zero-dimensional Shimura varieties, in which case we should add that
the bijection should commute with the induced map to the Shimura variety of the torus 7T'.
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4. COUNTING POINTS

Conjecture 3.2 follows in the case of PEL Shimura varieties corresponding to quaternion
algebras over totally real fields from work of Honda and Tate. Even the case of general PEL
Shimura varieties appears to be out of reach, however. Milne has shown that the conjecture
at least for Shimura varieties of Hodge type follows from a sufficiently good theory of motives.

4. COUNTING POINTS

The description of Conjecture 3.2 is far from explicit, and it is not clear that one could use
it to actually compute anything. In this section we will derive from it a formula for the
number of F,-points of Sh,,.

Let (G, X) be a Shimura datum satisfying the additional axioms (4), (5), and (6), and
fix a hyperspecial subgroup K, C G(Q,). We assume that G is simply connected and
Sh, (G, X) has canonical good reduction at a prime p of £ = E(G, X) over p (for example,
when (G, X) is of abelian type and unramified at p by Theorem 2.2). We otherwise use the
same notation as previous sections, such as L,, for the unramified extension of QQ, of degree
n. Let F, be a finite field containing the residue field k(p) of E,.

To say anything over [Fy, we first need a version of Conjecture 3.2 descending to finite
fields from the algebraic closure. To get this, we just need to equip the left-hand side
with a Galois action so we can take invariants, i.e. we should replace the data composing
LR(G, X) with data incorporating a Frobenius automorphism € acting on ¢, i.e. an element
of I(¢)(Q). We can then replace all of the data by corresponding data with suitable e-actions:
we define (¢, €) to be the automorphism group of the pair (¢, €), i.e. the centralizer of €
in 1(¢); XP(¢,€) is the subset of XP(¢) consisting of elements fixed by €, and X,(¢,¢€) is
the subset of X,(¢) such that € acts by ®" where r = [F, : k(p)]. It suffices to maintain
the admissibility conditions on ¢; since we want X,(¢,€) to again be nonempty, we can
equivalently require that X,(¢) have some element on which € acts by ®”, in which case
(¢, €) is said to be an admissible pair. If we define LRr, (G, X) to be the disjoint union of the
quotient S(¢,€) = I(¢, €)\XP (¢, €) x X, (¢, €) over isomorphism classes of pairs (¢, €) with ¢
admissible and € € I(¢), we again conjecture a bijection LRg, (G, X) — Sh,(G, X)(F,); this
conjecture turns out to follow from Conjecture 3.2, so it suffices to assume that one.

We could also get a formula for points of Shy» &, (Fq) by quotienting each S(¢,¢€) by K?;
working at a fixed level K? is sufficient since we just take the limit at the end, and often
convenient, so we do so (and generally omit it from the notation).

Fixing an admissible pair (¢, ¢), since € € 1(¢)(Q) C G(Q), it has an image v € G(A})
under the map G(Q) — G(Ay) — G(A%). The set XP(¢,¢) is the restricted product of
isomorphisms § — ¢(¢)o(, over primes ¢ # p fixing € or equivalently 7,. Such an isomorphism
of homomorphisms of affine extensions I'; — Eg({) is by definition an element of G(Qy) such
that ad(g) o & = ¢(¢) o {,. Working at level K?, this is true up to the action of K? for
any g, so Xy(¢,€) is just the subset of G(Q,)/K, fixing 7, under the right action, and so
XP(¢) = YP(7) ={g € G(A})/KP|yg = g (mod KP)}.

To understand X,(¢, €), we need to do a little more. Let O = W(F,), and B = FracO =
Lip,r,). By definition, X,(¢,€) is the subset of {g € G(L)/G(OL)|g'b(¢)g € G(OL) - u(p) -
G(Or)} on which € acts by ®", where b(¢) is the image (up to o-conjugacy) in G(Qp™)
of the lift of the Frobenius o € I')™ to D under D — G(Qp™) x I')*. The condition on
the action of € reduces to restricting g to G(B)/G(Q), in which case each element of the
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4. COUNTING POINTS

conjugacy class g~ 'bg can be taken over G(B), i.e. b(¢) is represented by some § € G(B), i.e.
g tbg = g 'dog, and so we can write X,(¢, €) as the set Y,(0) = {g € G(B)/G(O)|g 'dog €
G(O) - pu(p) - G(O)}. Write I = I(¢,€); on Ali-points, this is just the centralizer G(A%), of
7, and on Q,-points it is the o-centralizer Gs,(Q,) of §, i.e. g such that g~'dog = §. Thus
we can rewrite

S(¢,€) = 1(,€)(Q@Q)\Y?(y) x Y3(6).
The order of this is now something we can actually compute: let fP be the indicator function

of K? on G(Af), and ¢, be the indicator function of C,,(O) = G(O) - u(p) - G(O). Then

[T@\Y" () x Y3(9)] =/ P91 791)¢r (92 00 gn)

I(Q\G(A})xG(B)

/ 1P(95 ' v92) ¢ (g5 "0 g3)
(HQ\G(AE )y X Giso (B)) X (G(AD),\G(AD) X (G50 (B)\G(B))

— vol(I(Q\G(AL), X Gan(B)) - / (g 1) dg

I(AR)\G(AD)

: / ¢r(g”"d0g) dg,
H(@\G(B)

where the integrals are with respect to Haar measures on G (AI}) giving measure 1 to K?, on
I(A%) and 1(Q,) giving rational measure to compact open subgroups, and on G(B) giving
measure 1 to G(O). We call these integrals O, (f?) and TOgs(¢,) respectively, and writing
I(Af) = I(A%) x I(Q,) conclude that

[T@N\Y?(y) x Yp(9)] = vol(H(QN\G(Ay)) - O5(f7) - TOs(¢r)-

We define this quantity to be I(v9;7, d).

Note that Y?(y) and Y,(d) depend only on v and 0 respectively, as written, and not on
the original choice of (¢, €). We’d like to be able to work only in terms of v and d; they are
not arbitrary elements, but have the property that in G(Q,) each -, is conjugate to the same
element coming from G(Q), which we call ~y, and ¢ is such that

508025 - - - glFaFrl—15

is conjugate to the same 7y in G(Q,). We also impose an admissibility condition, which
implies that vy is elliptic in G(R), i.e. contained in an elliptic torus of Gg (i.e. anisotropic
in Gab).

We can also define I purely in terms of this triple (yo;7,6). Set Iy = G,,, the centralizer
of 7o in G. Since 7p is semisimple and G is simply connected, this is a connected and
reductive group. We set I, to be the inner form of (Iy)g whose image in G& is anisotropic;
more precisely, if T" is an elliptic maximal torus of Gr containing v, and x is such that h,
factors through 7', then adh, (i) preserves (Iy)gr and induces a Cartan involution on its image
in G&4, which gives a suitable twist of (Ip)g. For £ # p, we let I, be the centralizer of 7,
in Gg,, and I, is the inner form of G consisting of g € G(B) such that g~'dog = §. The
remainder of the admissibility condition is that [, admits an inner form I such that Ip, ~ I,
for every place v, including p and oo.
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4. COUNTING POINTS

We’ve seen that we can attach such a triple to an admissible pair (¢, €), with isomorphic
pairs giving isomorphic triples; the inner form [ is given by I(¢,€) in this case. We get a
map from the set of isomorphism classes of admissible pairs (¢, €) to the set of isomorphism
classes of triples; we call a triple effective if its isomorphism class is in the image of this map.

In general, this map is not a bijection, but it is finite-to-one. For any reductive group T
over Q we have a map

H(QT) = [[ H'(Q., 1),

and we write Ker'(Q, T) for its kernel.

Proposition 4.1. Fiz an effective triple (vo;7,d). Then the number of isomorphism classes
of admissible pairs mapping to the class of (70;7,9) is finite and given by the cardinality of
the kernel

ker(Ker'(Q, Iy) — HY(Q,@))

of the map induced by the inclusion Iy — G.

Proof. Since (70;7,9) is effective, there exists at least one admissible pair (¢, €9) whose
associated triple is in the same class as (79;7,0). Let (¢, €) be another such pair. Then
Hom((¢o, €0), (¢, €)) is an Aut(eyg, €9) = I (o, €o)-torsor and so gives a class in H'(Q, (¢, €g)).
Since the two pairs define the same triple, after localizing at each place the torsor is trivial,
and so gives an element of Ker'(Q, I(¢y, €0)). There is a natural map (o, €p) < G — G?P;
for any torus there is only one admissible ¢ by Proposition 1.5, so our torsor in fact gives an
element of ker(Ker'(Q, I(¢, €0)) — H'(Q,G®)). Any torsor is given by such a homomor-
phism, and the condition that the corresponding class vanish after localizing at each place
implies that the corresponding (¢, €) must map to the same triple, so this is a surjection; if
(¢',€') gives rise to the same class, it defines the same torsor and so is isomorphic to (¢, €),
so this is also a surjection.
The short exact sequence

1 -G -G —G* =1

induces

G(Q) » H'(Q,G™) » H'(Q,G) — H'(Q,G™) — H*(Q.G*),

so the vanishing of our class in H*(Q, G*) means that it lifts to an element of the image of
HY(Q,G%) in HY(Q,G). Since G is simply connected, by the Hasse principle

Hl (@’ Gder) N H Hl(@v; Gder)

is injective, so the vanishing of our class at each v implies that it is trivial in H(Q, G), i.e.
we can replace G® with G in the above. An elementary lemma of Langlands and Rapoport
shows that we can replace I (¢, €9) with Iy (of which it is an inner form) without changing the
cardinality, so we get a bijection between the fiber over (7o;7,d) and the kernel claimed. ]

Call this cardinality ¢(vo;7,d).
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Corollary 4.2. Let (G, X) be a Shimura datum satisfying the hypotheses of Conjecture 3.2,
and suppose that Conjecture 3.2 is true for Sh,(G, X). Then

IShy, (G, X)(F)l = > c(70:7,6) - 17057, 0),

[v037,9]
where the sum 1s over isomorphism classes of effective triples.

Again, we can also take both sides with level structure, as in the description above.

Let’s apply this description in a concrete case: counting elliptic curves with level struc-
ture. Let (G, X) = (GLg, H), so that Shx (G, X) are the modular curves. The fiber over a
triple corresponds to abelian varieties (in this case elliptic curves) isogenous to a fixed repre-
sentative Fy; for example, if we take Fjy supersingular, since all supersingular elliptic curves
form an isogeny class we can count supersingular curves with level structures as I(7o;7,9).
In this case we can take 7, trivial; in this case the centralizer is all of GLo, so O,(f?) is
just the measure evaluated on {1}, i.e. ﬁ For simplicity, let’s work over F,; then the

Frobenius is trivial and so TOg(¢,) is also trivial, so I(vo;7,0) = vol({(Q)\G(Ay)) - m

Since we want to vary K?, make a different choice of Haar measure on G(A%): choose the
measure on each factor such that GLg(Z,) has measure 1. This makes evaluating the first
factor easier and the second factor more complicated (rather than trivial).

In this case I = Aut(¢,e) = Aut(Ep) is a quaternion algebra over Q, split away from
p and co. We have vol(I(Q)\G(Ayf)) = vol((L(Q)\IL(Af)) vol({(Af)\G(Ay)); since I is split
away from p and oo, the second factor is just vol(1(Q,)\G(Q,™)), and I splits over Q)™ so
this is also 1; and the first factor is the order of I(Q)\/(As)/ O(Af) where O is a maximal
order of I (given by honest endomorphisms of Ej). By p-adic uniformization this is in
bijection with the isogeny class of Ejy, i.e. the set of supersingular curves over ]FTD with no
level structure, so adding KP-level structure changes the number of curves by a factor of
—+=. We can compute this explicitly for K? = I'(N) (with p { N): for £ { N, the local
factor is just GLo(Z,) since N is invertible in Zy, so vol(Ky) = vol(GLg(Z,)) = 1. If £ divides
N a times, then modulo ¢* we have vol(GLy(Z,)/K,) = vol(GLy(Z/¢°Z)/B) for B the Borel
subgroup over Z/¢*Z. This quotient classifies full flags in (Z/¢°Z)?, i.e. one-dimensional
subspaces of (Z/(°Z)?, i.e. the projective line over Z/(*Z, which has ¢*~'(¢ + 1) rational
vol(GL2(Zy)) 1

7111 — =iz L herefore this factor is

[Je e+ :NH(H—%).

ta|N oN

points, so vol K, =
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