
Canonical models∗

Avi Zeff

1. Definition of canonical models

Our next goal is to show that Shimura varieties admit models over number fields. In par-
ticular, we saw before that for every Shimura datum (G,X) and compact open subgroup
K ⊂ G(Af ) we get a map

ShK(G,X)→ πK

where πK is a “zero-dimensional Shimura variety” and the fibers of the map are the connected
components, themselves connected Shimura varieties attached to (G,X+) where X+ is a
connected component of X. Our goal is to find a model of this map over some number
field E depending on (G,X), called the reflex field. This gives a description of the action
of Aut(C/E) on the set of connected components, which defines a model of each connected
component over a finite extension of E.

Why should we expect Shimura varieties to have algebraic models at all? If not, i.e.
the smallest model of a Shimura variety is transcendental over Q, then we could write it
as Sh(G,X) → SpecK(t) for some extension K of Q, which extends to a family over K of
varieties indexed by t, which gives nontrivial deformations of our Shimura variety. On the
other hand we expect Shimura varieties to be locally rigid, which would imply they would
have to be defined over Q: up to isomorphism, there are only countably many arithmetic
locally symmetric varieties at all. It is possible to make this argument rigorous, but we will
not do so.

The terminology “reflex field” recalls the reflex field of a CM type, and indeed our reflex
field will be a direct generalization. Let (E,Φ) be a CM type, and let T = ResE/Q(Gm). We
can choose an isomorphism T (R) = (E ⊗Q R)× ' (CΦ)× and a homomorphism hΦ : S→ TR
defined on real points by

z 7→ (z, . . . , z) ∈ (CΦ)×,

i.e. with the Φ-action of E. On C-points, we get points in both (CΦ)× and (CΦ̄)×, i.e.

(z1, z2) 7→ (z1, . . . , z2, z2, . . . , z2) ∈ (CΦ)× × (CΦ̄)×.

This gives a cocharacter C× → T (C)× ' (CΦ)× × (CΦ̄)× by

z 7→ (z, . . . , z, 1, . . . , 1),

defined over Q.
The reflex field of (E,Φ) is the subfield of Q fixed the automorphisms σ ∈ Gal(Q/Q)

which fix Φ; since the action on T (C)× is by Φ, these are the same ones which fix µ. This
suggests that we define the reflex field of a Shimura datum (G,X) as the field fixed by the
automorphisms fixing µ = h(−, 1) for some h ∈ X.

∗These notes are based on chapters 12-14 of [1].
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1. DEFINITION OF CANONICAL MODELS

This has two problems: first of all, such a cocharacter µ is not well-defined since it
depends on a choice of h ∈ X; and second, it is a priori defined only over C, not Q.

To fix the first, we note that h is well-defined up to G(R)-conjugacy, so we instead look at
conjugacy classes of cocharacters. To get such a class over Q, we look at the set of conjugacy
classes varying over fields: for any subfield k of C, let C(k) be the set of G(k)-conjugacy
classes of cocharacters of G defined over k, i.e. C(k) = G(k)\Hom(Gm, Gk) with action by
conjugation.

This is functorial in k, but how exactly it depends on the field is unclear; we’d like to
relate it to something where we can understand the relationship better. Suppose that G
splits over k (e.g. when k is algebraically closed), so that it contains a split maximal torus
T . Let N be the normalizer of T in Gk and W = N/T be the Weyl group. There is a map
Hom(Gm, Tk) → Hom(Gm, Gk) by postcomposing with the inclusion; after quotienting by
G(k) on the right, the map descends to the quotient by the Weyl group on the left.

Lemma 1.1. The map W\Hom(Gm, Tk)→ G(k)\Hom(Gm, Gk) = C(k) is bijective.

Proof. Any two maximal tori are conjugate, so any map Gm → Gk can up to conjugacy be
taken to have image in Tk, i.e. the map is surjective. Suppose that µ and µ′ are cocharacters
of T over k which are G(k)-conjugate, say µ = ad(g) ◦ µ′ for g ∈ G(k). Then ad(g)(T )
and T are both maximal split tori in the centralizer C of µ(Gm) (T centralizes µ(Gm) by
commutativity, and since it also centralizes µ′(Gm) for the same reason ad(g)(T ) centralizes
ad(g)(µ′(Gm)) = µ(Gm)), a connected reductive group. Therefore they agree up to C(k)-
conjugacy, so ad(c)(ad(g)(T )) = ad(cg)(T ) = T for some c ∈ C(k). Thus cg normalizes T ,
so is in N(k), and ad(cg) ◦ µ′ = ad(c)(ad(g) ◦ µ′) = ad(c) ◦ µ = µ since c ∈ C(k), so µ and
µ′ are in the same N -orbit and thus in the same W -orbit.

Now, W (Q) and Hom(Gm, TQ) agree with W (C) and Hom(Gm, TC), so the lemma implies

that C(C) = C(Q). Since h(−, 1) : S(R) → S(C) → G(C) gives a unique element of C(C)
depending only on X, it follows that we get a well-defined conjugacy class of cocharacters
µX defined over Q.

Definition 1.2. The reflex field E of a Shimura datum (G,X) is the field of definition of
µX , i.e. the field fixed by the automorphisms in Gal(Q/Q) fixing µX in C(Q), or equivalently
stabilizing it as a subset of Hom(Gm, GQ).

From the above in the case where G = ResE/Q(Gm) and X is the singleton with element
hΦ coming from a CM-type (E,Φ), the reflex field of (G,X) is just the reflex field of the
CM-type. More generally, if T is any torus over Q and h : S→ TR is a homomorphism, then
the reflex field E is the fixed field of the subgroup of Gal(Q/Q) fixing the cocharacter µh.

Suppose that (G,X) is a simple PEL datum of type (A) or (C), corresponding to a simple
algebra B with involution over Q. Then the reflex field E is generated by the traces of the
elements of B; the automorphisms fixing E are exactly those fixing the abelian varieties,
as well as the associated PEL structure, parametrized by the Shimura varieties for (G,X).
Thus the reflex field is the natural field of definition of the corresponding moduli problem.

Consider for example the case of a quaternion algebra B over a totally real number
field F . In this case the cocharacter µ is (up to conjugacy, i.e. base change) the one sending
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1. DEFINITION OF CANONICAL MODELS

z ∈ Gm(R) to the tuple with entry 1 for the factors for which the quaternion algebra becomes

isomorphic to H after tensoring with R and

(
z

1

)
for those where it becomes isomorphic

to M2(R). This cocharacter is defined over Q, and the reflex field is the fixed field of the
subgroup of Gal(Q/Q) stabilizing the split places of B over F . For example, in the case
where there is exactly one split place, so that the Shimura variety is a curve, then the reflex
field E is given by the corresponding embedding of F into R.

We can now observe some properties of the reflex field. One important one is that it is
always a number field: we can always find a finite extension of Q splitting G, and any such
field k must contain E since in that case W (k) = W (Q) = W (C) and so µ descends to k
and so is defined over some subfield.

The functoriality of C in G implies that µX is functorial under inclusions of Shimura data,
and in particular an inclusion (G,X) ↪→ (G′, X ′) induces a reverse inclusion E(G,X) ⊃
E(G′, X ′). For example, Shimura varieties of Hodge type all embed into Siegel modular
varieties, so one might hope that to get the largest set of possibilities for reflex fields of
Shimura varieties of Hodge type we should have the reflex field of Siegel modular varieties
equal to Q. This is in fact the case, since GSp(ψ) is already split over Q and so the
corresponding reflex fields must be subfields of Q, i.e. Q.

Now, we have defined the reflex field E over which we hope a given Shimura variety
Sh(G,X) to be defined, and our strategy is to find the action by Aut(C/E) to ensure that
there must be a model defined over E using our theory of the corresponding action on
abelian varieties. Now, at least for many kinds of Shimura varieties, their complex points
parametrize abelian varieties; but in fact we only know how to compute the action on abelian
varieties with complex multiplication. Thus we need to look at points on the Shimura variety
corresponding to abelian varieties with complex multiplication: these are special points.

For x ∈ X, we say that x is special if the corresponding cocharacter hx : S → GR has
image in a torus T (defined over Q), i.e. hx(C×) ⊆ T (R). In this case we say that (T, x) is a
special pair. If we assume that the Shimura datum (G,X) additionally satisfies axioms (4)
and (6), i.e. the weight homomorphism is rational and Z(G)◦ splits over a CM field, then
we call x a CM point, and (T, x) a CM pair.

Consider for example the Shimura datum given by GL2 acting on the upper and lower
half-planes H± = C−R, corresponding to the connected Shimura variety (SL2,H). A point
z = x + iy ∈ H± corresponds to the cocharacter hz : S → (GL2)R given by the conjugation

of h0 : a+ bi 7→
(
a −b
b a

)
by some g such that gi = z, e.g.

(
y x
0 1

)
; the stabilizer in GL2(R)

of z is exactly hz(C×). Thus z is special if its stabilizer is contained in a torus. All maximal
tori of GL2 are of the form ResE/Q Gm where E is some degree 2 étale Q-algebra; such a
torus fixes z if and only if it contains z after embedding into C, in which case E = Q[z].
Thus the torus cannot be split and so E is some quadratic extension of Q, necessarily totally
imaginary, and the elliptic curve C/(Z + zZ) has complex multiplication by E.

Conversely, if z generates a quadratic imaginary extension E/Q, we can embed ResE/QGm

into G, where its real points stabilize z. Therefore the special points of H± are exactly those
corresponding to elliptic curves with complex multiplication.

This works more generally: whenever the Shimura variety classifies abelian varieties with
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1. DEFINITION OF CANONICAL MODELS

some additional structure, the special points correspond to abelian varieties of CM type.
In this case the theory of complex multiplication describes an action of an open subgroup
of Aut(C) on these abelian varieties with structure, and thus on the corresponding special
points of the Shimura variety. Our next goal is to define a general action on the special
points, which does not depend on the moduli interpretation (since not all Shimura varieties
have one) but agrees with the action defined by complex multiplication when there is a
moduli interpretation.

Let T be a torus over Q, with µ : S→ TR a cocharacter defined over some finite extension
E of Q, i.e. descending to µ : ResE/Q Gm → T . For Q ∈ T (E), we can take the product over

embeddings
∏

ρ:E→Q ρ(Q) to get something Gal(Q/Q)-invariant and therefore in T (Q). Let
r = r(T, µ) : ResE/QGm → T given by composing this operation with µ, i.e.

r(P ) =
∏

ρ:E→Q

ρ(µ(P ))

for P ∈ E×.
For any special pair (T, x) ⊂ (G,X), we can define E(x) to be the field of definition of

µx; this is the reflex field of (T, {x}) as a Shimura variety, and so is a number field. We
define rx to be the composition

A×E(x)

r(AQ)−−−→ T (AQ)→ T (Af )

where the last map is just the projection and the first is r(T, µx). For a = (af , a∞) ∈ A×E(x) =

(E(x)⊗Q R)× × A×E(x),f , we have

rx(a) =
∏

ρ:E→Q

ρ(µx(af )).

We can now define canonical models. For a Shimura datum (G,X) and compact open
subgroup K ⊂ G(Af ), write [x, a]K for the element of ShK(G,X) = G(Q)\X × G(Af )/K
represented by (x, a) ∈ X ×G(Af ).

Definition 1.3. A model MK(G,X) of ShK(G,X) over the reflex field E = E(G,X) is
canonical if for every special pair (T, x) ⊂ (G,X) and a ∈ G(Af ), the point [x, a]K has coor-
dinates in E(x)ab, and for every σ ∈ Gal(E(x)ab/E(x)) and s ∈ A×E(x) with s corresponding
to σ under the map of class field theory we have

σ[x, a]K = [x, rx(s)a]K .

In other words, MK(G,X) is canonical if every automorphism σ ∈ Aut(C/E(x)) acts on
[x, a]K according to the same rule as for complex multiplication.

Definition 1.4. Let (G,X) be a Shimura datum. A model of Sh(G,X) over a field k ⊂ C
is an inverse system M(G,X) = (MK(G,X))K of varieties over k with a right action of
G(Af ) whose base change to C recovers (ShK(G,X))K = Sh(G,X), compatibly with the
G(Af )-action. A model M(G,X) of Sh(G,X) over E(G,X) is canonical if each MK(G,X)
is canonical.
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1. DEFINITION OF CANONICAL MODELS

Consider for example Shimura varieties corresponding to tori. If T is a torus over Q and
h : S→ TR is a homomorphism, then (T, h) is a Shimura datum, and E = E(T, h) is the field
of definition of µh = h(−, 1). As we saw in our section on first properties of Shimura varieties,
ShK(T, h) = T (Q)\{h} × T (Af )/K is a finite set for every compact open K ⊂ T (Af ), and
we have a continuous action of Gal(Eab/E) on ShK(T, h) by σ[h, a]K = [x, rx(s)a]K for any
s corresponding to σ via class field theory. This action gives a model of ShK(T, h) over E,
which is canonical by definition.

In fact, we can define canonical models for the Shimura pairs for CM types. We looked
above at the Shimura datum (T, hΦ) associated to a CM type (E,Φ), where T = ResE/QGm

and hΦ : S → (ResE/Q Gm)R is given on real points by z 7→ Φ(z) ∈ (E ⊗Q R)× =
(ResE/Q Gm)(R). The reflex field E(T, hΦ) is the reflex field E∗, and r(T, µΦ) is a homo-
morphism ResE∗/Q Gm → ResE/Q Gm, namely the reflex norm NΦ∗ .

The Shimura variety for this datum has a moduli structure: for any compact open K ⊂
T (Af ), ShK(T, hΦ) classifies isomorphism classes of triples (A, i, ηK), where (A, i) is an
abelian variety over C of CM-type (E,Φ) and η is a level structure, i.e. an E ⊗ Af -linear
isomorphism V (Af ) → Vf (A), with isomorphisms E-linear isogenies compatible with the
level structures.

We can exhibit this classification by writing down the bijection: let V be a one-dimensional
vector space over E, viewed as a vector space over Q, so that the action of E embeds
T in GLQ(V ). Given an abelian variety (A, i) of CM-type (E,Φ), it is E-isogenous to
AΦ = CΦ/Φ(OE). On cohomology, this isogeny induces an isomorphism a : H1(A,Q) →
H1(AΦ,Q); the latter is a Q-vector space with an action of E by Φ, and so can be iden-
tified with V such that a carries hA to hΦ. Tensoring with Af , we get a composition of
E ⊗ Af -linear isomorphisms

V (Af )
η−→ Vf (A)

a−→ V (Af )

of one-dimensional E⊗Af -modules, so it is an element of GL1(E⊗Af ) = (E⊗Af )
× = T (Af ).

This gives a map (A, i, η) 7→ [g] from the set of such tuples to T (Q)\{hΦ} × T (Af ); one can
check that taking η to be defined only up to K induces the right-hand side being defined up
to K, and that it descends to the level of isomorphism classes and after this is a bijection.

We’ve seen that abelian varieties of given CM-type (E,Φ) form equivalent categories over
Q and over C, so we can just as well take our triples (A, i, ηK) with (A, i) defined over Q.
We have an action of Gal(Q/E∗) on the setMK of such triples σ(A, i, ηK) = (σA, σi, σηK),
where ση refers to the composition

V (Af )
η−→ Vf (A)

σ−→ Vf (σA).

Since σ fixes E∗, it does not change the CM type: (σA, σi) is again of CM-type (E,Φ).
On the other hand, we also have an action on ShK(T, hΦ) by the same rule as above,

σ[g] = [rhΦ
(s)g]K

for s corresponding to σ under class field theory. This defines a model of ShK(T, hΦ) over
E∗. To see that it is really a canonical model, we need to know that this action is compatible
with the moduli structure:

Proposition 1.5. The mapMK → ShK(T, hΦ) sending (A, i, η) 7→ [a◦η]K as defined above
commutes with the actions of Gal(Q/E∗).
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2. UNIQUENESS OF CANONICAL MODELS

Proof. Fix (A, i, η) ∈ MK and a : H1(A,Q)→ V as above, and let σ ∈ Gal(Q/E∗). By the
main theorem of complex multiplication, there exists an E-linear isogeny α : A → σA such
that α(NΦ∗(s)x) = σx for s corresponding to σ and x ∈ Vf (A), and so

σ(A, i, η) = (σA, σi, ση) 7→ [a ◦ Vf (α)−1 ◦ σ ◦ η]K .

But Vf (α)−1 = NΦ∗(s) = rhΦ
(s) and so

σ(A, i, η) 7→ [a ◦ Vf (α)−1 ◦ σ ◦ η] = [rhΦ
(s) · (a ◦ η)]K ,

i.e. the actions of Gal(Q/E∗) on MK and ShK(T, hΦ) commute with the map MK →
ShK(T, hΦ).

2. Uniqueness of canonical models

With a definition of canonical models in hand, our next goal is to show that (as the name
implies) they are unique whenever they exist (up to unique isomorphism). Our strategy will
be to use special points to show that certain morphisms are defined over the reflex field E,
which will yield the desired isomorphisms of models; then we just need to show that we
always have special points.

The first thing to do is to observe that a variety V over a field k of characteristic zero
is uniquely determined (up to unique isomorphism) by the data of its base change to VK
for any algebraically closed K ⊃ k together with an action of Aut(K/k) on V (K). This
is a corollary of the fact that the functor sending V to the data of VK plus the action of
Aut(K/k) on V (K) is fully faithful, which is essentially an application of Zorn’s lemma.

Fix a Shimura datum (G,X), let g ∈ G(Af ) and K,K ′ ⊂ G(Af ) be compact open
subgroups such that K ′ ⊃ g−1Kg. Then the action of g defines a map

T (g) : ShK(G,X)(C)→ ShK′(G,X)(C)

sending [x, a]K 7→ [x, ag]K′ , which is a map of complex algebraic varieties.

Theorem 2.1. If ShK(G,X) and ShK′(G,X) have canonical models over E = E(G,X),
then T (g) is defined over E.

Proof. From the full faithfulness of the above functor, it suffices to show that every σ ∈
Aut(C/E) fixes T (g). Suppose that x0 ∈ X is a special point. Then the cocharacter µx is
defined over E(x0), and so E(x0) ⊃ E, so our first goal is to show that σ(T (g)) = T (g) for
σ ∈ Aut(E(x0)/E).

Choose some s ∈ A×E(x0) corresponding to σ (or to its restriction to E(x0)ab). We have a
commutative diagram

ShK(G,X) ShK′(G,X)

ShK(G,X) ShK′(G,X)

T (g)

σ σ

T (g)
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2. UNIQUENESS OF CANONICAL MODELS

sending

[x0, a]K [x0, ag]K′

[x0, rx0(s)a]K [x0, rx0(s)ag]K′

by the description of the action of σ on a canonical model. Thus σ and T (g) commute on
all points of the form [x0, a] for a ∈ G(Af ) and x0 special. By Lemma 2.2 below, such points
form a dense subset of ShK(G,X) (in the Zariski topology), and so since σ and T (g) are
continuous this is true at every point. We’ve restricted to σ fixing E(x0) for some special
point x0, but Lemma 2.4 below shows that in fact such σ generate all of Aut(C/E).

Lemma 2.2. The set of points of the form [x, a]K for a ∈ G(Af ) and x special is dense in
ShK(G,X).

Proof. In fact, {[x, a]K |a ∈ G(Af )} is dense for any x; the result then follows from the
existence of a special point, which we split off as Lemma 2.3 below. To see this, note that by
real approximation G(Q)x is dense in X for the complex topology, and so G(Q)x × G(Af )
is dense in X × G(Af ), so so is its image in ShK(G,X)(C). Since the complex topology is
stronger than the Zariski topology, kal vachomer the image of G(Q)x×G(Af ) is also dense
in the Zariski topology. Since [gx, b]K = [x, g−1b]K , this image consists of elements of the
form [x, a]K , and clearly contains all of them.

Lemma 2.3. For every Shimura datum (G,X), there exists a special point in X.

Proof. Choose some x ∈ X. Since hx(C×) is abelian, it is contained in some maximal torus
T (defined over R) in GR. As a maximal torus, T is the centralizer on GR of some regular
λ ∈ Lie(GR). For any λ0 ∈ Lie(G) sufficiently close to λ, it will also be regular and so
has centralizer another maximal torus T0, now defined over Q. Since λ0 and λ are chosen
very close together, they are in particular in the same connected component and so their
stabilizers are conjugate over R: there is some g ∈ G(R) such that (T0)R = gTg−1. Then
ghxg

−1 has image in (T0)R; this is the cocharacter corresponding to the action of g on x by
conjugation, i.e. hgx = ghxg

−1, and so hgx has image in a torus defined over Q and so gx is
a special point.

A similar but more involved argument (using the Hilbert irreducibility theorem) proves
the following result.

Lemma 2.4. Let (G,X) be a Shimura datum. For every finite extension L of E(G,X) in
C, there exists a special point x ∈ X such that E(x) is linearly disjoint from L.

In particular, by taking a chain of (finite subfields of) E(x) we can generate all extensions.
For example, for GL2, as in our example above, this is just the statement that for any finite

extension of Q in C, there exists a quadratic imaginary extension E/Q linearly disjoint from
L. In this case this is easy to see: take any prime p unramified in L, and let E = Q[

√
−p].

In general the proof is more delicate.
We can now conclude:
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3. EXISTENCE OF CANONICAL MODELS

Theorem 2.5. A canonical model of ShK(G,X), if it exists, is unique up to unique isomor-
phism. If ShK(G,X) has a canonical model for every compact open subgroup K ⊂ G(Af ),
then so does Sh(G,X), and it is unique up to unique isomorphism.

Proof. The second statement follows immediately from the first, together with the result from
Theorem 2.1 that the natural morphisms between the ShK(G,X) are defined over E(G,X).
To see the first, suppose that MK(G,X) and M ′

K(G,X) are canonical models of ShK(G,X),
with isomorphisms ϕ : MK(G,X)C

∼→ ShK(G,X) ∼← M ′
K(G,X) : ϕ′ compatible with the

Galois action. We can take the situation of Theorem 2.1 with K = K ′ but the two canonical
models on each side, with an isomorphism T (1) between them (namely ϕ′−1 ◦ ϕ); then the
theorem shows that it must be defined over E(G,X). Thus MK(G,X) and M ′

K(G,X) are
uniquely isomorphic over E(G,X).

A canonical model for ShK(G,X) also defines an action of Aut(C/E) on the set of
connected components π0(ShK(G,X)). We saw that when Gder is simply connected this is a
“zero-dimensional Shimura variety”

π0(ShK(G,X)) ' T (Q)\Y × T (Af )/ν(K),

where ν : G→ T is the quotient by Gder and Y is the quotient of T (R) by the image T (R)†

of Z(R) in T (R). For any x ∈ X, let h = ν ◦hx. The corresponding cocharacter µh is defined
over E, and so defines a homomorphism

r = r(T, µh) : A×E → T (A).

If s corresponds to σ (or its restriction to Eab), write r(s) = r(s)f × r(s)∞ ∈ T (A) '
T (R)× T (Af ). Then σ ∈ Aut(C/E) acts on π0(ShK(G,X)) ' T (Q)\Y × T (Af )/ν(K) by

σ[y, a]K = [r(s)∞y, r(s)f · a]K

for all y ∈ Y and a ∈ T (Af ). This is compatible with the usual notion: π0 of a canonical
model of ShK(G,X) is the canonical model of Shν(K)(T, Y ). This formula can be deduced
from the usual formula for canonical models from Definition 1.3 for σ sending a special point
x0 to y; a slight improvement to Lemma 2.4 shows that such σ generate Aut(C/E).

3. Existence of canonical models

Next, we want to outline the proof that any Shimura variety has a canonical model, which
by Theorem 2.5 is unique. The strategy is as follows: we noted in the last section that the
functor sending a variety V over some k ⊂ C to its base change VC together with an action
of Aut(C/k) on V (C) is fully faithful. Then given ShK(G,X), a complex variety, we want
to be able to show that it is in the essential image of this functor; thus our first goal is to
be able to describe this essential image, i.e. the theory of descent. We’ll then apply this
to Siegel modular varieties and then to Shimura varieties of PEL, Hodge, and abelian type,
and sketch how the argument works in general.
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3.1. Descent: conditions for the existence of a model

Given a variety V over C and an action of some G = Aut(C/k) on V (C), in order for this
action to give descent to k it should come from an action on algebraic varieties. In particular
for each σ ∈ G we get another complex variety σV , given by applying σ to the coefficients of
the polynomials defining V , and similarly P ∈ V (C) corresponds to a point σP in (σV )(C),
given by applying σ to the coordinates of P . Since we want this to arise from an algebraic
variety, the morphism P 7→ σP should be a regular map, and indeed a regular isomorphism
since the action of σ is invertible (since G is a group). In particular we should have a regular
isomorphism σV 7→ V sending σP to P . To have any hope of having such things descend
to k, they should respect the action of G; to get a map σV → V respecting G, we compose
with the action of σ on the right, to get a map (σV )(C)→ V (C) sending σP 7→ σ ·P which
we hope will descend to an isomorphism of varieties over k. At the least, it should come
from an isomorphism of varieties, i.e.

σP 7→ σ · P

should be a regular isomorphism for every σ; this is called the regularity condition for the
action of G, and is one of the conditions we will need in order for descent to work.

This is equivalent to requiring that σP 7→ σ ·P be induced by a regular map fσ : σV → V ;
the families of such fσ are the descent data. In the case where V arises from a variety over k,
then σ fixes V , i.e. σV = V , and the action of σ is just given by the action on coordinates,
i.e. σ · P = σP , so each fσ is the identity.

Generally we say that a Galois action is continuous if it factors through a finite extension;
in this case, we say that the action by G = Aut(C/k) is continuous if there is a model V0

of V over some intermediate extension k ⊂ L ⊂ C finitely generated over k such that the
action of Aut(C/L) agrees with the restriction of G to L. Certainly if V has a model over k
this is true, with L = k; what makes it useful to assume is the following relationship between
continuity and regularity.

Proposition 3.1. A regular action of G on V (C) is continuous if there exist points P1, . . . , Pn
in V (C) such that the only automorphism of V fixing every Pi is the identity, and there exists
a finitely generated L/k in C such that every σ ∈ Aut(C/L) fixes each Pi.

Proof. Let V0 be any model of V over some subfield L of C finitely generated over k, and
write ϕ : (V0)C → V for the corresponding isomorphism. By the second assumption, for L
sufficiently large we can assume that the Pi are L-points of V , and thus descend to L-points
of V0. Now, we have a map σV → V sending

σP 7→ σ · P,

which is a regular isomorphism since the action is regular; for P0 ∈ V0(C) mapping to P
under ϕ, precomposing with P 7→ ϕ−1(P ) = P0 7→ (σϕ)(P0) gives an automorphism of V ,
where σϕ can be applied to P0 for σ ∈ Aut(C/L) since V0 is defined over L and so σ fixes
V0. Since such σ fix each Pi, this whole automorphism fixes each Pi, and so by the first
assumption must be the identity, i.e. fσ((σϕ)(ϕ−1(P ))) = P where fσ : σP 7→ σ · P is the
descent datum mentioned above. In particular, applying this with P = ϕ(σP0) gives

ϕ(σP0) = fσ((σϕ)(σP0)) = fσ(σ(ϕ(P0))) = σ · ϕ(P0)
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and so the action of σ ∈ Aut(C/L) induced by the model V0 over L agrees with the action
of G restricted to Aut(C/L), i.e. the action is continuous.

A theorem of Weil states that these two conditions, in addition to being necessary as
we have seen, are also sufficient: if V is a quasiprojective variety over C with a regular and
continuous action of Aut(C/k), then it arises from a model over k. Combining this result
with Proposition 3.1, we get the following condition.

Corollary 3.2. A complex variety V with an action of Aut(C/k) arises from a variety over
k if V is quasiprojective, the action is regular, and there exist points P1, . . . , Pn satisfying
the conditions of Proposition 3.2.

We next want to try to apply our criteria to see that our simplest interesting case, the
Siegel modular variety, has a canonical model. First we need to say something about families
of Hodge structures and abelian varieties.

3.2. Variations of integral Hodge structures

Let S be a complex manifold, and F be a local system of Z-modules on S, i.e. a sheaf which
is locally isomorphic to the constant sheaf Zn for some n. Suppose that for every s ∈ S we
have a Hodge structure hs on Fs⊗R. We say that F , together with these Hodge structures,
is a variation of integral Hodge structures on S if for every open subset U ⊂ S on which F
is trivial (F ⊗ R, (hs)) is a variation of Hodge structures in the usual sense, or equivalently
the pullback of (F ⊗ R, (hs)) to the universal cover of S is a variation of Hodge structures.
A polarization of a variation of Hodge structures (F, (hs)) is a pairing ψ : F × F → Z such
that ψs is a polarization of (Fs, hs) for every s.

Let V be a smooth complex algebraic variety. A family of abelian varieties over V is a
regular map f : A → V of smooth varieties plus a multiplication map A ×V A → A over
V inducing the structure of an abelian variety of constant dimension on each fiber of f . In
this case A is also called an abelian scheme over V . Given any abelian scheme f : A → V
and local system F on A, the analogy of the first homology is the dual of the “first relative
cohomology,” i.e. (R1f∗F )∨. Whereas the first homology of an abelian variety carries the
structure of a polarizable integral Hodge structure, this relative homology is now a variation
of such structures.

Theorem 3.3. Let V be a smooth variety over C. Then (A, f) 7→ (R1f∗F )∨ is an equivalence
between the categories of families of abelian varieties over V and the category of polarizable
integral variations of Hodge structures of type {(−1, 0), (0,−1)}.

The special case where V = SpecC is a point recovers the equivalence between complex
abelian varieties and the associated Hodge structures.

3.3. The Siegel modular variety

Let’s now try to apply this theory. Let (V, ψ) be a symplectic space over Q, with (G,X) =
(GSp(ψ), X(ψ)) the associated Shimura datum. Since in this subsection we are focused on
this Shimura datum, we will drop it from the notation and write ShK for ShK(G,X).

10
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First, we want to compute the reflex field. We’ve already stated that this should be Q
since G = GSp(ψ) is already split over Q, but we can see this more directly: any symplectic
bases for V (C) determines a pair of complementary Lagrangian subspaces L,L′ ⊂ V (C) such
that L⊕L′ = V (C). Given such a pair, we can write down an action of Gm on GL(V ) given
on complex points by acting on L by multiplication by z and on L′ by the identity. As we
vary the pair of Lagrangians, we get all possible conjugacy classes of cocharacters. Since V
(defined over Q) is already symplectic, we can find a symplectic basis over Q extending to
one over C, so the same is true of our Lagrangians and hence of the cocharacters: we can
find a representative in c(X) defined over Q, and so E(G,X) = Q.

Next, we want to study the special points. Recall that for each compact open subgroup
K ⊂ G(Af ), ShK(C) classifies isomorphism classes of triples (A, s, ηK) where A is an abelian
variety over C, s is an alternating form on H1(A,Q) which is a polarization up to a sign, and
η : V (Af ) → Vf (A) is an isomorphism sending ψ to a multiple of s, defined only up to the
K-orbit. We want to know which triples (A, s, ηK) correspond to special points, i.e. map to
[x, a] ∈ ShK(C) with x special.

The answer is given by a slight extension of our notion of CM abelian varieties. Define
a CM algebra to be a finite product of CM fields. Then we say that an abelian variety A
over C is CM if there exists some CM algebra E with a homomorphism E → End0(A) such
that H1(A,Q) is a free E-module of rank 1. This is equivalent to being a product of abelian
varieties of some CM-type.

For any abelian variety A over C, there is a homomorphism hA : C× → GL(H1(A,R))
giving the natural complex structure on H1(A,R) (since if A(C) ' Cg/Λ then H1(A,R) =
Λ⊗ R ' Cg).

Proposition 3.4. An abelian variety A over C is CM if and only if there exists a torus
T ⊂ GL(H1(A,Q)) such that hA(C×) ⊂ T (R).

By the definition of special points and the fact that if (A, s, ηK) corresponds to [x, a] then
there is an isomorphism H1(A,Q) → V carrying hA to hx, an immediate corollary is that
(A, s, ηK) maps to [x, a] with x special if and only if A is CM.

Proof. Up to isogeny, every abelian variety is a product of simple abelian varieties, and the
statements only depend on the isogeny class of A, so we may assume A is simple.

If A is a CM simple abelian variety, the corresponding CM algebra E must be a field, and
we’ve seen that a CM field corresponding to an abelian variety will have degree 2 dimA over
Q. On the other hand End0(A) is a division algebra over Q since A is simple and acts simply
on H1(A,Q), which is of dimension 2 dimA, so E = End0(A) is a CM field of degree 2 dimA
over Q. On the other hand if End0(A) is such a field then by definition A is of CM-type.

Suppose that A is CM, so that by the above End0(A) is a CM field of degree 2 dimA
over Q, so H1(Q) is a one-dimensional E-vector space. Tensoring with R, we get an action
of E ⊗ R on H1(A,R) preserving the Hodge structure, and so hA(C×) commutes with the
action of E ⊗ R, so that

hA(C×) ⊂ (E ⊗ R)× = (ResE/QGm)(R).

This proves one direction of the proposition.
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Conversely, suppose that hA(C×) ⊂ T (R) for some torus T ⊂ GL(H1(A,Q)). Taking
complex points, this is equivalent to µA(C×) ⊂ T (C), where µA = hA(C)(−, 1) as usual.
For any abelian variety, End0(A) is the subalgebra of End(H1(A,Q)) preserving the Hodge
structure, or equivalently (tensoring with C) commuting with µA(Gm) in GL(H1(A,C)).
Since we assume µA(C×) ⊂ T (C) for some torus T ⊂ GL(H1(A,Q)), End0(A)⊗ C contains
the subalgebra of End(H1(A,C)) commuting with the action of TC. We can decompose
H1(A,C) over the characters of T ; the endomorphisms fixing every component give an étale
C-algebra of degree 2 dimA in End(H1(A,C)), and so End0(A) contains an étale Q-algebra
of degree 2 dimA, which by the argument above must be all of End0(A). By assuming A is
simple we can reduce to the case where E = End0(A) is a field.

It remains to see that this is a CM-field. Choose a polarization of A giving a Riemann
form ψ on H1(A,Q). The Rosati involution e 7→ e∗ is determined by

ψ(x, ey) = ψ(e∗x, y)

for e ∈ E, x, y ∈ H1(A,Q), so since ψ(x, y) = ψ(h(i)x, h(i)y) we get

h(i)∗ = h(i)−1 = −h(i).

Therefore the Rosati involution is nontrivial on E, and fixes an index 2 subfield F ; we can
find some α ∈ F× such that E = F [

√
α] and

√
α
∗

= −
√
α, uniquely determined up to

multiplication by a square in F , i.e. E is totally imaginary over F . We need only to show
that F is totally real. By identifying H1(A,Q) with E by choosing some basis vector over
E, we can write

ψ(x, y) = TrE/Q αxy
∗

for x, y ∈ E, and by the positivity of ψ we have

ψR(x, x) = TrE⊗R/R(α/h(i) · x2) > 0

for 0 6= x ∈ F ⊗R, i.e. F is totally real, and the image of α in R for any embedding F ↪→ R
must be negative since otherwise E ⊗F R = R × R along this embedding with (r1, r2)∗ =
(r2, r1), which makes the positivity condition impossible, so ∗ is complex conjugation for
E/F , i.e. E is a CM field. By the equivalence above, this completes the proof.

Now that we understand special points, we can give a criterion for when a model is
canonical. First, we need to understand how Aut(C/Q) acts on the set of tuples (A, s, ηK) ∈
MK . We know how σ acts on A and ηK, but s is something of a mystery. However, we can
understand it more explicitly: s is a Hodge tensor in H2(A,Q), and so is represented (up to
coefficients in Q) by some codimension 1 cycle, i.e. a divisor D in A, i.e. s = r[D] for r ∈ Q×
and a divisor D. Then we can define σs = r[σD]; the necessary conditions on s are preserved
by this action. Then we get an action of Aut(C/Q) onMK by σ(A, s, ηK) = (σA, σs, σηK).

Proposition 3.5. Suppose that ShK has a model over Q for which the map MK →MK(C)
commutes with the actions of Aut(C/Q). Then MK is canonical.

Proof. By Lemma 2.2, it suffices to prove that we have the correct action on points [x, a] with
x special, since the action of each σ is continuous and such points are dense in ShK(C). For
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[x, a] corresponding to an abelian variety A with complex multiplication by a CM field, the
correct formula for the action of any σ is given by the main theorem of complex multiplication.
For more general CM abelian varieties, the same formula follows in the same way with a bit
more difficulty, after decomposing into factors.

We are now ready to outline the proof of the existence of a canonical model for Siegel
modular varieties using Corollary 3.2.

The action of Aut(C/Q) onMK induces such an action on ShK(C). Any Shimura variety
is quasiprojective, so we only need to check that this action is regular and continuous in order
to apply Corollary 3.2 to conclude that it has a model over Q; if we can find such a model,
Proposition 3.5 shows that it is canonical.

Let’s first check continuity. For any x ∈ X, the proof of Lemma 2.2 showed that the set
of points [x, a] for a ∈ G(Af ) is dense in ShK(C), and so any automorphism of ShK fixing
all such points must be the identity. In fact ShK has only finitely many automorphisms, so
we can pick a finite subset [x, a1], . . . , [x, an] such that any automorphism fixing all of them
must be the identity: if f is an automorphism other than the identity, pick some [x, a1] not
fixed by f , which we can assume is sent to another point of the form [x, a2]; this is also
not a fixed point of f , since if we apply f sufficiently many times we recover [x, a1], so we
can continue applying f until we recover [x, a1]; we can do the same thing for each f and
take the union. We can restrict x to be special by density, and so by the main theorem of
complex multiplication for σ ∈ Aut(C/L) for some fixed finite extension of E(x) we have
σ · [x, ai] = [x, ai], so the action is continuous.

Regularity is a bit more involved. We want to show that the map fσ : σ ShK(C) →
ShK(C) sending σP 7→ σ · P is regular. We can assume that K is small, since if K ′ ⊃ K
then ShK′ is a quotient of ShK and so the claim for ShK implies the claim for ShK′ .

We want to work one connected component at a time. The largest commutative quotient
ν : G → T of G = GSp(ψ) is just Gm, and so the connected components of ShK are given
by the double quotient

Q>0\A×f /ν(K).

Let ε be an element of this quotient, with corresponding connected component ShεK . This is
some quotient of the form Γε\X+ for a connected component X+ of X and Γε = G(Q)∩Kε

for some conjugate Kε of K.
If a : H1(A,Q) → V is an isomorphism sending s to a multiple of ψ, as must exist for

each tuple (A, s, ηK) ∈MK , then we can write the image of (A, s, ηK) in Q>0\A×f /ν(K) as
[ν(a ◦ η)], where we view a ◦ η : V (Af ) → V (Af ) as an element of G(Af ) = Autψ(V ). Let
Mε

K be the fiber of the moduli problem over ε, i.e. the tuples (A, s, ηK) with ν(a ◦ η) ∈ ε.
When we let Aut(C/Q) act on Q>0\A×f /ν(K) via the cyclotomic character

σ[α] = [χ(σ)α]

for α ∈ A×f and χ(σ) ∈ Ẑ× determined by sending roots of unity to ζχ(σ) = σζ, the map

MK → Q>0\A×f /ν(K) is Aut(C/Q)-equivariant, so it suffices to prove the claim on each
fiber.

Let σ(Γε\X+) be the algebraic variety given by change of base field by σ as usual; let U be
the universal cover of σ(Γε\X+). For any Γε-stable lattice Λ in V , since X+ is the universal
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cover of Γε\X+ the Γε-action on Λ gives a local system F of Z-modules on Γε\X+ since
π1-modules are equivalent to local systems; this is a polarized integral variation of Hodge
structures. By Theorem 3.3, this is equivalent to a family of abelian varieties f : A→ Γε\X+.
This is a morphism of complex algebraic varieties and so we can apply σ to get a family
of abelian varieties σf : σA → σ(Γε\X+), or equivalently a polarized integral variation of
Hodge structures (R1(σf)∗Z)∨ on Γε\X+, which pulls back to a polarized integral variation
of Hodge structures on U . Tensoring with Q to eliminate the dependence on the lattice Λ,
we get a variation of polarized rational Hodge structures on U , i.e. a rational local system F̃
on U together with a complex structure hu on F̃u for every u ∈ U . The local system is just
the one coming from Λ⊗Q, i.e. the constant local system with value V ; if we keep track of
orientations correctly, each hu gives a Hodge structure on V which is positive for ψ, i.e. a
point of X+. This gives a map U → X, u 7→ hu, making the diagram

U X+

σ(Γε\X+) Γε\X+

u7→hu

fσ

commute. The map u 7→ hu is holomorphic, so so is fσ; by Borel’s theorem it follows that it
is regular.

We’ve shown that ShK satisfies the conditions of Corollary 3.2 over Q, so it has a model
over Q; Proposition 3.5 shows that this is canonical. Therefore we’ve proven that ShK , and
generally Sh(GSp(ψ), X(ψ)), has a canonical model over Q.

3.4. Simple PEL Shimura varieties of type (A) or (C)

This case is similar to the case of the Siegel modular variety, though somewhat more com-
plicated: ShK(G,X) classifies tuples (A, i, s, ηK) satisfying certain conditions; we can verify
that σ fixing the reflex field also fix such tuples, find that special points correspond to CM
abelian varieties, apply the main theorem of complex multiplication to compute the action
on these points and verify that they satisfy the necessary conditions, and use the Shimura-
Taniyama theorem to see that a model with the correct action is canonical.

3.5. Shimura varieties of Hodge type

In this case, ShK(G,X)(C) classifies isomorphism classes of tuples (A, s0, s1, . . . , sn, ηK),
where the si are Hodge tensors. We can apply a similar proof to the case of the Siegel
modular variety; first, though, we need to define an action of Aut(C/Q) on such data, and
in particular on the si. In the Siegel case, we only had one Hodge tensor s, which was
an element of H2(A,Q) and so could be identified, up to a rational scalar, with a divisor,
on which Aut(C/Q) naturally acts. For general Hodge tensors, though, to make a similar
identification of Hodge tensors with cycles we would need to know the Hodge conjecture,
which is far from known even for abelian varieties. The fundamental difficulty is that in
general there is no natural map Hn(A,Q) → Hn(σA,Q) which we could take to be the
action of σ on Hodge tensors.
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However, if we take coefficients in Af the situation is better: if A ' Cg/Λ, then we have
identifications

Hn(A,Af ) ' Hom(∧nΛ,Af ) ' Hom(∧n(Λ⊗ Af ),Af ) ' Hom(ΛnVf (A),Af ),

and σ acts on Vf (A) and thus on everything. A (difficult) theorem of Deligne states that this
descends to the situation over Q for Hodge tensors: given a Hodge tensor s on an abelian
variety A over C, if sAf is the image in the Af -cohomology, for any σ ∈ Aut(C/Q) there is a
unique Hodge tensor σs on σA such that (σs)Af = σ(sAf ). At this point a similar argument
to that for the Siegel modular variety shows that any Shimura variety of Hodge type has a
canonical model.

Alternatively, we can use the following result, which subsumes the case of PEL Shimura
varieties as well:

Proposition 3.6. Let (G,X) ↪→ (G′, X ′) be an inclusion of Shimura data. If Sh(G′, X ′)
has a canonical model, then so does Sh(G,X).

Proof. An inclusion of Shimura data induces a closed immersion of Shimura varieties. The
existence of a canonical model M ′ for Sh(G′, X ′) over the reflex field E implies that the
diagram

Sh(G′, X ′) M ′

SpecC SpecE

is Cartesian, so the immersion Sh(G,X) ↪→ Sh(G′, X ′) has image a closed subscheme M of
M ′ extending the diagram to

Sh(G,X) M

Sh(G′, X ′) M ′

SpecC SpecE

.

The action induced by M commutes with that from M ′, so it is easy to check that (possibly
up to a finite quotient) the Galois action makes M canonical (possibly over some finite
extension of E, the reflex field of Sh(G′, X ′)).

Since Shimura data of Hodge type are those that inject into Siegel modular data (and
include PEL Shimura data), it follows that Shimura data of Hodge (and therefore PEL) type
have canonical models. This does give less information than repeating the above proofs,
though, in that it does not give as detailed a description over arbitrary fields.
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3.6. Shimura varieties of abelian type

Recall that by definition a Shimura datum (G,X) of abelian type is one such that (Gder, X+)
is of abelian type, which itself means that it is isogenous to a product of Shimura data
injecting into Siegel modular data, i.e. it is a (connected) Hodge Shimura datum. To use
this definition, we’d like to be able to reduce to the connected setting, so we’d like a notion
of canonical models for connected Shimura varieties. Deligne defines such a notion, whose
precise definition we omit; the key result is that Sh(G,X) has a canonical model (in our
usual sense) if and only if Sh◦(Gder, X+) has a canonical model (as a connected Shimura
variety, in Deligne’s sense).

In fact, Deligne also shows that these canonical models of connected Shimura data behave
well with respect to isogenies and products:

Proposition 3.7. Let (G1, X1) → (G2, X2) be an isogeny of connected Shimura data.
If Sh◦(G1, X1) has a canonical model, then so does Sh◦(G2, X2). Further, if (G,X) =∏

i(Gi, Xi) = (
∏

iGi,
∏

iXi) and each Sh◦(Gi, Xi) has a canonical model M◦(Gi, Xi), then∏
iM

◦(Gi, Xi) is a canonical model for Sh◦(Gi, Xi).

The claim then follows: by Deligne’s results, to show that Shimura varieties of abelian
type have canonical models it suffices to show the claim for Hodge Shimura varieties, which
we’ve seen follows from the Siegel modular variety case and Proposition 3.6.

Note that this tells us only about existence, and doesn’t give much in the way of a
description. When ShK(G,X)(C) has a moduli interpretation, it’s possible (as in previous
cases) to extract a description of the canonical model.

3.7. General Shimura varieties

In general, we do not have access to moduli interpretations, and the situation is much more
difficult. The key idea is to use Deligne’s techniques to deduce the result from sufficient
results for certain subvarieties, and in particular to focus on Shimura subvarieties of type
A1, i.e. coming from quaternion algebras over totally real fields F .

By the techniques of Deligne we can reduce to connected Shimura data (G,X+) with
G simple and simply connected, and therefore of the form ResF/QH for some geometrically
simple H over F . If we replace F by some sufficiently large extension F ′ such that HF ′

splits over a CM field over F ′, we get a group G′ = ResF ′/QHF ′ whose Shimura variety has
Shimura subvarieties of type A1, unlike the original (G,X+). These A1-Shimura subvarieties
are certainly Hodge so the claim can be proven for them, and it follows for (G′, X+) through
difficult arguments; then Sh◦(G,X+) is a Shimura subvariety of Sh◦(G′, X+) and so also has
a canonical model.

In fact, what is proven in this way is not Shimura’s conjecture on the existence of canon-
ical models, but a slightly stronger statement due to Langlands, namely that there exist
isomorphisms fσ : σ Sh(G,X) → Sh(Gσ, Xσ) for new Shimura data (Gσ, Xσ) defined in
terms of (G,X) and σ, satisfying certain conditions. For σ fixing the reflex field, these fσ
define descent data and thus give rise to a canonical model.

This method is independent of our previous (moduli problem-based) methods for proving
the existence of a canonical model and so does not depend on the moduli interpretations of
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Shimura varieties, except for these A1-Shimura varieties, whose moduli interpretation can
be understood explicitly (as we’ve looked at).
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