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1. The Shimura-Taniyama formula

Our next goal is to show that although a priori they are only defined over C, every Shimura
variety has a canonical model over some number field E. This is essentially equivalent to the
statement that some Aut(C/E), i.e. some finite index subgroup of Aut(C/Q), acts naturally
on the points of the Shimura variety. Thus if we hope to find models over number fields
the first thing to do is to describe the action of some Aut(C/E) on the points of a Shimura
variety. In the case where the Shimura variety has an interpretation as the moduli space of
abelian varieties with some additional structure, this description is given by the theory of
complex multiplication.

Given a complex abelian variety A of dimension g, there is a canonical way of viewing
its C-points as Cg/Λ for a lattice Λ. Namely, its tangent space Lie(A) at the identity is
a complex vector space of dimension g, and the exponential map exp : Lie(A) → A(C)
is surjective. Its kernel is some g-dimensional Z-lattice Λ in Lie(A), so that canonically
A(C) = Lie(A)/Λ ' Cg/Λ. The N -torsion points in A(C) are then in bijection with Λ/NΛ,

since Lie(A) is torsion-free, and so Tf (A) = lim←−N A(C)[N ] ' Λ⊗Z Ẑ, Vf (A) = Tf (A)⊗Q '
Λ ⊗Z Af . Endomorphisms a : A → A of A induce endomorphisms da : Lie(A) → Lie(A)
fixing Λ.

To talk about abelian varieties with complex multiplication, our next goal, we first need
to introduce CM fields. A CM field E is a number field such that there exists a totally real
subfield F of E such that E/F is an imaginary quadratic extension. If E is a CM field over
F , then every embedding j : F ↪→ R corresponds to two conjugate embeddings ϕj, ϕj of E
into C. A CM type Φ for E is a choice of one of ϕj or ϕj for each j. For example, if E is
just an imaginary quadratic extension over the totally real field Q, then a CM type for E is
just a choice of embedding into C.

Given a complex abelian variety A of dimension g and an action i : E → End0(A) =
End(A)⊗Z Q for a CM field E of degree 2g over Q, we say that (A, i) is of CM-type Φ if for
every x ∈ E, the action di(x) on Lie(A) decomposes as

di(x) =
∑
ϕ∈Φ

ϕ(x).

(Note that although only integral elements of E actually act on A, all elements of E act on
Lie(A) by (qx)(v) = q · x(v) for x ∈ OE and q ∈ Q.)

Given any A and i : E → End0(A) for E CM, (A, i) will always be of some CM type
Φ. Indeed, since Λ is a Z-lattice in Lie(A), tensoring with R gives all of Lie(A), and so
tensoring with C gives Λ ⊗Z C = Lie(A) ⊕ Lie(A), where x ∈ E acts on the second factor
by di(x). This is a complex vector space of dimension 2g. On the other hand, if we tensor
with Q instead we obtain an algebra of dimension 2g over Q, which also has an action of E

∗These notes are based on chapters 10-11 of [1].
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1 THE SHIMURA-TANIYAMA FORMULA

and so is one-dimensional over E. Therefore Λ⊗Z C = (Λ⊗Z Q)⊗Q C is an E-module and
so decomposes as a sum of copies of C each with an E-algebra structure, i.e. an embedding
ϕ : E → C. Since Lie(A) and Lie(A) are submodules compatible with the E-action, each
contains half of these copies of C with a ϕ-action; if ϕ occurs in Lie(A), then ϕ occurs in
Lie(A), so Lie(A) comes with a CM-type for E.

If A is simple, then any number field with the correct degree acting on A must be a CM
field, but in general this is not true. For example, if C is an elliptic curve with complex
multiplication by E, then C × C has an action (up to isogeny) of M2(E), and therefore of
any field embedding into M2(E). But this includes all quadratic extensions of E, which need
not be CM.

Just as it is possible to associate to any abelian variety with suitable action a CM type,
we can also associate to a CM type an abelian variety of that type.

For a CM type (E,Φ), write CΦ for a direct sum of copies of C indexed by Φ, each
with the corresponding E-action, and also write Φ for the morphism OE → CΦ sending
x 7→ (ϕ(x))ϕ.

Proposition 1.1. With the notation above, the image Φ(OE) ⊂ CΦ is a lattice, and the
quotient CΦ/Φ(OE) is an abelian variety AΦ of CM-type (E,Φ), with the map iΦ : E →
End0(AΦ) given by the action of ϕ on the ϕ’th factor. Moreover any other pair (A, i) of
CM-type (E,Φ) is E-isogenous to (AΦ, iΦ).

Proof. To show that the image of OE is a lattice, we just need to show that tensoring with R
gives all of CΦ. By linearity this reduces to showing that for each ϕ we have ϕ(OE)⊗ZR ' C;
fixing the embedding ϕ, we can think of this as just OE ⊗Z,ϕ R, which is the same thing as
OE ⊗Z Q⊗Q,ϕ R = E ⊗Q,ϕ R ' E ⊗F,ϕ R ' C since E is imaginary quadratic over F .

To show that the quotient is an abelian variety, it suffices to write down a Riemann
form; one can work out that (u, v) 7→ TrE/Q(αuv∗) works, where ∗ is the unique nontrivial
automorphism of E over F and α is a totally imaginary element of E, i.e. one such that
α∗ = −α. By construction (AΦ, iΦ) is of CM-type (E,Φ).

Finally, suppose that (A, i) is of CM type (E,Φ), so that Lie(A) is isomorphic as an
E ⊗Q C-module to CΦ. There is a canonical lattice Λ such that A(C) = Lie(A)/Λ, and so
A(C) is isomorphic to CΦ/Λ, and the image of QΛ is stable under the action of E via Φ.
Therefore it must be equal to Φ(E) up to multiplication by some invertible scalar in E⊗QR.
After rescaling the isomorphism Lie(A) ' CΦ by this scalar, we can assume QΛ = Φ(E), so
there is some lattice Λ′ in E mapping to Λ; but any such lattice is contained in 1

N
OE for

N sufficiently large, and so there is an isogeny CΦ/Φ(OE)→ CΦ/Φ(NΛ′) = CΦ/NΛ defined
over E. But multiplication by N gives an isogeny A(C) = Lie(A)/Λ ' CΦ/Λ → CΦ/NΛ
over E, and so A is E-isogenous to CΦ/Φ(OE) = AΦ.

We can also define CM types for abelian varieties defined over any (sufficiently large)
subfield k of C in the same way. We say that a complex variety V has a model over k if there
exists a variety V0 and an isomorphism (V0)C

∼→ V , where (V0)C denotes the base change to
C along SpecC→ Spec k.

Proposition 1.2. Let (A, i) be an abelian variety of CM-type (E,Φ) over C. Then (A, i) has
a model over Q, unique up to isomorphism, which is also an abelian variety with CM-type
(E,Φ).
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Proof. To see uniqueness, it suffices to observe that the functor sending abelian varieties
over Q to their base change to C is fully faithful. The torsion points on A(k) are Zariski
dense for abelian varieties A and any algebraically closed field k, and over any such k the
N -torsion points are isomorphic to (Z/NZ)2 dimA, so any map of abelian varieties AC → BC
is defined by its restriction to torsion points, all of which are defined over Q. Thus any
automorphism of C/Q fixes the morphism on torsion points and thus on the whole variety,
i.e. every morphism AC → BC is actually defined over Q and therefore this functor is fully
faithful.

It remains to show existence, i.e. that if (A, i) is of CM-type (E,Φ) then it actually does
arise from some model over Q. Consider the ring R generated over Q by the coefficients of
the polynomials defining A and i. There are finitely many of these, so R is finitely generated
over Q. Any maximal ideal m of R has residue field a finite extension of Q, i.e. Q itself
since it is algebraically closed; call the reduction of (A, i) modulo m a specialization of (A, i).
Then any such specialization (A′, i′) is also of CM-type (E,Φ), since passing from C to R to
Q does not change the eigenvalues of the action of some generator of E on the tangent space
of A. By Proposition 1.1, the base change (A′, i′)C is therefore isogenous to (A, i) over E
since both have CM-type (E,Φ). The kernel H of this isogeny is a subgroup of the torsion
points of A′(C), which as above are all defined over Q and so we can quotient by the kernel
to get a pair (A′/H, i) which is a model over Q for (A, i).

Note that a model over Q implies a model over some number field: A is defined over Q
by some polynomials, the coefficients of which all lie in Q and thus are each in some number
field. Taking the compositum of these fields gives a number field over which A is defined.

Proposition 1.2 implies for example that any elliptic curve over C of CM-type must
have algebraic j-invariant, since the curve must be defined over Q and the j-invariant is an
algebraic function of the coordinates.

We say that an abelian variety A over a number field K has good reduction at a prime
p of K if it extends to an abelian scheme A over OK,p. Let Ā = A ×OK,p

k be the special
fiber of A, i.e. the fiber over the finite field k = OK/p. This is called the reduction of A
modulo p, and turns out to be independent of the choice of A. There is an isomorphism of
Tate modules Vf (A) ' Vf (Ā) and an inclusion of endomorphism rings End(A) ↪→ End(Ā)
compatible with this isomorphism, since both arise from the reduction.

There is a criterion for having good reduction over number fields, namely the Néron–
Ogg–Shafarevich criterion: an abelian variety A over a number field K has good reduction
at a prime p of K if there is a prime ` different from the characteristic of OK/p such that
the inertia group at p acts trivially on T`A.

Proposition 1.3. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number field
K ⊂ C, and let p be a prime ideal in OK. After possibly replacing K by a finite extension,
A will have good reduction at p.

Proof. We apply the Néron–Ogg–Shafarevich criterion. In our case, V`A ' H1(AC,Q)⊗Q` is
a free E⊗QQ`-module of rank 1, since H1(AC,Q) is one-dimensional over E. Thus the action
of Gal(Q/K) factors through this action, i.e. the action of some subgroup of (E ⊗Q Q`)

×,
which will automatically be compact. Any such subgroup will be a finite extension of a pro-`
subgroup. On the other hand I is a finite extension of a pro-p group for p the characteristic
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of OK/p, so the image of I in this subgroup is finite; and by replacing K by a finite extension
we can kill the image of I, so by applying the criterion we conclude that A has good reduction
at p.

Lemma 1.4. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number field K ⊂ C
having good reduction at p to (Ā, ī) over OK/p = Fq. Then the Frobenius π = πĀ of Ā lies
in ī(E).

Proof. It suffices to show the claim after tensoring with Q`, since whether π ∈ ī(E) is
determined by applying linear functionals which are independent of the base ring. Since V`A
is a free E ⊗Q Q`-module of rank 1, so is V`Ā, and since π acts on V`Ā and commutes with
the action of E ⊗Q Q` it is in EndE⊗QQ`

V`Ā = ī(E)⊗Q Q`.

In particular, given such a pair (A, i) with good reduction at p, identifying E with
its image under ī we get an element π ∈ E, which by the Weil conjectures for abelian
varieties over finite fields is a q-integer, i.e. an algebraic integer satisfying |π| = √q for every
embedding into C.

We’d like to be able to pin down π. As an element of E, up to a unit this is the same
thing as specifying ordv(π) for every place v of E. In fact, ordv(π) = 0 for v - p and π is
determined up to a root of unity by specifying its valuation only at v dividing p, by the
following lemma.

Lemma 1.5. Let π and π′ be q-integers in a number field E, with ordv(π) = ordv(π
′) for

every v|p, where p = charFq. Then π′ = ζπ for some root of unity ζ in E, and ordv(π) =
ordv(π

′) = 0 for every finite place v - p.

Proof. Consider the automorphism of Q[π] sending π 7→ q/π. In particular q/π is also an
algebraic integer, so ordv(q/π) = ordv(q) − ordv(π) ≥ 0 for every v and so ordv(π) = 0
for every finite v - p for any algebraic integer π and in particular also for π′. Therefore
ordv(π) = ordv(π

′) for every v, and since both are q-integers |π|v = |π′|v for every place
(finite or infinite) of v, i.e. |π′/π|v = 1 for every v; this is true only for roots of unity.

Indeed, we cannot hope to do better than specifying π up to a root of unity, because
different choices of (A, i) with the same CM-type, though in the same isogeny class, may
have different Frobenius elements; all these Frobenii will differ only by roots of unity, but we
cannot eliminate all ambiguity. Up to this ambiguity, though, we can specify π as follows.

In the situation above, for each prime v of E over p let Hv = Hv,p be the set of embeddings
E ↪→ K such that the inverse image of p is the prime ideal corresponding to v.

Theorem 1.6 (Shimura-Taniyama). Suppose that (A, i) is any abelian variety of CM-type
(E,Φ) over a number field K containing all conjugates of E, and p is a prime of K over p
with residue field OK/p ' Fq such that A has good reduction at p. Then for every place v of
E over p, we have

ordv(π) = ordv(q) ·
|Φ ∩Hv|
|Hv|

.
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We hope that such a formula is compatible with complex conjugation, and ours is: we
have ππ̄ = q and so

ordv(π) + ordv(π̄) = ordv(q)

and
ordv(π̄) = ordv̄(π),

and similarly
Φ ∩Hv̄ = Φ ∩Hv.

Therefore our formula gives

ordv(q) = ordv(π) + ordv(π̄) = ordv(q) ·
|Φ ∩Hv|+ |Φ ∩Hv̄|

|Hv|
,

which in turn is just

ordv(q) ·
|(Φ ∪ Φ) ∩Hv|

|Hv|
= ordv(q)

as desired. In fact the formula of the theorem is the only one which is compatible with
complex conjugation in this sense.

Any finitely generated OE-module M can be written uniquely as
⊕

iOE/p
ri
i for ideals pi

and integers ri ≥ 1. Write |M |OE
for the ideal

∏
i p

ri
i , which is well-defined by the uniqueness

of this decomposition.
In particular if A is an abelian variety of dimension g over Fq with a homomorphism

i : OE → End(A) for E a number field of degree 2g over Q, this makes Lie(A) into an
OE-module. It turns out that |Lie(A)|OE

is the ideal generated by the Frobenius (πA).
In the situation of Theorem 1.6, since replacing A with an isogenous variety does not

change the validity of the theorem we may do so to assume that i(OE) ⊆ End(A). By
assumption A has good reduction at p, and so extends to an abelian scheme A over OK,p.
This is smooth of relative dimension g and so the tangent space T over OK,p is a free OK,p-
module of rank g, with the corresponding action of OE, whose base change to K recovers
Lie(A) and to Fq recovers Lie(Ā).

If p is unramified in E, then T ⊗OK,p
K ' KΦ since (A, i) has CM-type (E,Φ), and

this isomorphism restricts to an isomorphism of OE-module T ∼→ OΦ
K,p, i.e. T is a direct

sum of copies of OK,p indexed by ϕ ∈ Φ with the action by ϕ : OE → OK ⊂ OK,p. Thus
Lie(A) = T ⊗OK,p

OK,p/p is a direct sum of copies of OK,p/p ' Fq each with the action of
OE by ϕ/p : OE → OK ↪→ OK,p � OK,p/p, and so as OE-modules the ϕ’th factor is (the
preimage under ϕ of) the norm NmK/ϕ(E) p, and so |Lie(Ā)|OE

, which we observed earlier is
just (πĀ), is the product of these ideals. For v a place of E over p, the only ϕ which contribute
a nontrivial term to ordv are those which are the preimage of p under some embedding of E
into K, i.e. those in Hv, so

ordv(π) =
∑

ϕ∈Φ∩Hv

deg(p/ϕ(v)).

We’ve assumed p is unramified in E, so ordv(p) = 1 for v|p and so ordv(q) = deg(p/p), so

deg(p/ϕ(v)) = deg(p/p)
deg(ϕ(v)/p)

. The denominator is just |Hv| and is independent of ϕ, so this is

ordv(π) = ordv(q) ·
|Φ ∩Hv|
|Hv|
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as claimed.
Without the assumption that p is unramified, the proof becomes more complicated but

will still work. However it is actually not necessary: the unramified case suffices to prove the
main theorem of complex multiplication (Theorem 2.2), which in turn implies Theorem 1.6.

2. The main theorem

We now turn to describing the action of complex multiplication. In the dimension 1 case,
elliptic curves, curves with complex multiplication by a CM field E generate the maximal
abelian extension Eab of E, by describing the action of Gal(Eab/E) on the curve and its
torsion points and then applying class field theory. We now want to extend this theory to
higher-dimensional abelian varieties. In this case we need to introduce a reflex field E∗,
which is the same as E in the one-dimensional case, such that complex multiplication by E
corresponds to the action of Gal(E∗ab/E∗). We then interpret this description in terms of
the action of Aut(C/E∗) on the complex points of a certain Shimura variety.

To define the reflex field, we need the following equivalence.

Proposition 2.1. Let (E,Φ) be a CM type. The following conditions on a subfield E∗ of Q
are equivalent:

(a) the set of σ ∈ Gal(Q/Q) which fix E∗ are exactly those which fix Φ;

(b) E∗ is generated over Q by
∑

ϕ∈Φ ϕ(a) for a ∈ E;

(c) E∗ is the smallest subfield k of Q such that there exists a k-vector space V with an
action of E such that

Trk(a|V ) =
∑
ϕ∈Φ

ϕ(a)

for every a ∈ E.

Any of these conditions uniquely specifies a number field E∗; we call this field the reflex
field of (E,Φ).

Proof. First, suppose that σ fixes Φ; then certainly it fixes everything of the form
∑

ϕ ∈
Φϕ(a) for a ∈ E, and conversely if σ fixes such a sum then it must be permuting the ϕ, so
conditions (a) and (b) are equivalent. If k is a field as in (c), then it contains every element
as in (b) and so contains the field specified by (b). On the other hand the field from (b)
does in fact have such an action: there is a representation of E× with character the sum of
the ϕ ∈ Φ (since (a) and (b) are equivalent), which extends by zero to an action of E with
trace

∑
ϕ∈Φ ϕ(a), so the field from (b) satisfies the condition of (c) and is contained in any

other such field, so is the smallest such field.

By condition (c), there exists an E∗-vector space V with an action of E such that

TrE∗(a|V ) =
∑
ϕ∈Φ

ϕ(a)
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for every a ∈ E; we could equivalently regard V as an E∗ ⊗Q E-vector space, or as an
E-vector space with an E-linear action of E∗. The reflex norm is the homomorphism NΦ∗ :
ResE∗/Q(Gm)→ ResE/Q(Gm) sending

a 7→ detE(a|V )

for every a ∈ E∗. Since V is unique up to an isomorphism of E ⊗Q E∗-algebras, this
homomorphism depends only on E and Φ (since E∗ depends only on them).

If (A, i) is an abelian variety of CM-type (E,Φ) over C. We know (by Proposition 1.2)
that (A, i) has a model over Q, so we only need to study the action of automorphisms of Q
rather than all of C; for any field K over which (A, i) is defined, Lie(A) gives a K-vector
space with an action of E by TrK(a|Lie(A)) =

∑
ϕ∈Φ ϕ(a) for a ∈ E, and so by condition

(c) K must contain E∗.

Theorem 2.2. Let (A, i) be an abelian variety of CM-type (E,Φ) over C, and let σ ∈
Gal(Q/E∗). For any s ∈ A×E∗,f whose image under A×E∗,f ↪→ A×E∗ → E∗×\A×E∗

Art−−→
Gal(E∗ab/E∗) is σ, there exists a unique E-linear isogeny α : A→ σA such that α(NΦ∗(s) ·
x) = σx for every x ∈ VfA.

Proof. Observe that (σA, σi) is of CM type (E, σΦ). Since σ fixes E∗ by definition, by
Proposition 2.1 (a) it fixes Φ, i.e. σΦ = Φ, so (σA, σi) is also of CM type (E,Φ), and
therefore by Proposition 1.1 there is an E-isogeny α : A→ σA.

On Vf (A), the composition

Vf (A)
Vf (σ)
−−−→ Vf (σA)

Vf (α)−1

−−−−→ Vf (A)

is E-linear and Af -linear, i.e. linear over E ⊗Q Af = AE,f . The Tate module is one-
dimensional over AE,f , so this composition must be given by multiplication by some element
a of A×E,f . Since α is well-defined up to an element of E×, a is well-defined, i.e. depends only

on σ, as an element of E×\A×E,f . Thus we get a map Gal(E∗ab/E∗) → E×\A×E,f sending
σ to a, which we can check is a homomorphism. Composing with the reciprocity map
E∗×\A×E∗,f → Gal(E∗ab/E∗) this gives a map

E∗×\A×E∗,f → E×\A×E,f .

We might guess that this is the morphism induced from NΦ∗ . It suffices to check this on
the Frobenius elements (1, . . . , 1, πv, 1, . . .) where πv is a uniformizer for OE∗,v and is in the
vth place for every place v, since these generate A×E∗,f .

By Proposition 1.2, the abelian variety (A, i) with CM type (E,Φ) is actually defined over
some number field K; by enlarging K suitably, we can assume that it contains all conjugates
of E and has good reduction at a prime p unramified over its intersection v with OE∗ , which
is over a prime p unramified in E. (Strictly speaking these conditions fail for some primes,
but by restricting to the ray class group we could obtain all primes.)

Recall from the proof of Theorem 1.6 that the ideal generated by the Frobenius π of A
at p is given by

(π) =
∏
ϕ∈Φ

ϕ−1(NmK/ϕ(E)(p)).
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For V = Lie(A), this is just NΦ∗(NmK/E∗(p)), which is NΦ∗(OE ∩ p)f for some integer f
(namely the degree of the extension of residue fields corresponding to p over OE ∩ p). On
the other hand π is given by σf , up to some isogenies as above, and so σ is sent under this
map to NΦ∗(OE ∩ p). Thus the map is the one induced from NΦ∗ , so in particular for any
x ∈ VfA and σ, s as in the statement of the theorem, α−1(σx) = ax for a the image of s
under the map E∗×\A×E∗,f → E×\A×E,f (up to changing α by a constant) which we know is
just NΦ∗(s). Therefore α−1(σx) = NΦ∗(s) · x and so α(NΦ∗(s) · x) = σx.

References

[1] James S Milne. Introduction to Shimura varieties. Harmonic analysis, the trace formula,
and Shimura varieties, 4:265–378, 2005.

8


