Complex multiplication*
Avi Zeft

1. THE SHIMURA-TANIYAMA FORMULA

Our next goal is to show that although a priori they are only defined over C, every Shimura
variety has a canonical model over some number field E. This is essentially equivalent to the
statement that some Aut(C/FE), i.e. some finite index subgroup of Aut(C/Q), acts naturally
on the points of the Shimura variety. Thus if we hope to find models over number fields
the first thing to do is to describe the action of some Aut(C/E) on the points of a Shimura
variety. In the case where the Shimura variety has an interpretation as the moduli space of
abelian varieties with some additional structure, this description is given by the theory of
complex multiplication.

Given a complex abelian variety A of dimension g, there is a canonical way of viewing
its C-points as C9/A for a lattice A. Namely, its tangent space Lie(A) at the identity is
a complex vector space of dimension g, and the exponential map exp : Lie(A) — A(C)
is surjective. Its kernel is some g-dimensional Z-lattice A in Lie(A), so that canonically
A(C) = Lie(A)/A ~ C9/A. The N-torsion points in A(C) are then in bijection with A/NA,
since Lie(A) is torsion-free, and so T¢(A) = lim = A(C)[N] ~ A @z Z, Vi(A) =TrA) ® Q ~
A ®z Ay. Endomorphisms a : A — A of A induce endomorphisms da : Lie(A) — Lie(A)
fixing A.

To talk about abelian varieties with complex multiplication, our next goal, we first need
to introduce CM fields. A CM field E is a number field such that there exists a totally real
subfield F' of E such that E/F is an imaginary quadratic extension. If E is a CM field over
F, then every embedding j : F' < R corresponds to two conjugate embeddings ¢;,p; of F
into C. A CM type @ for F is a choice of one of ¢; or i, for each j. For example, if F is
just an imaginary quadratic extension over the totally real field Q, then a CM type for E is
just a choice of embedding into C.

Given a complex abelian variety A of dimension g and an action i : F — End’(A) =
End(A) ®z Q for a CM field F of degree 2g over Q, we say that (A, 1) is of CM-type ® if for
every x € E, the action di(z) on Lie(A) decomposes as

4i(e) = 3 ¢(a).

ped

(Note that although only integral elements of E actually act on A, all elements of E act on
Lie(A) by (gx)(v) = q - z(v) for z € Og and ¢ € Q.)

Given any A and i : E — End’(A) for E CM, (A, i) will always be of some CM type
®. Indeed, since A is a Z-lattice in Lie(A), tensoring with R gives all of Lie(A), and so
tensoring with C gives A ®7 C = Lie(A) @ Lie(A), where z € E acts on the second factor
by di(x). This is a complex vector space of dimension 2g. On the other hand, if we tensor
with Q instead we obtain an algebra of dimension 2g over QQ, which also has an action of £

*These notes are based on chapters 10-11 of [1].
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and so is one-dimensional over E. Therefore A ®7 C = (A ®z Q) ®q C is an F-module and
so decomposes as a sum of copies of C each with an E-algebra structure, i.e. an embedding
¢ : B — C. Since Lie(A) and Lie(A) are submodules compatible with the E-action, each
contains half of these copies of C with a y-action; if ¢ occurs in Lie(A), then @ occurs in
Lie(A), so Lie(A) comes with a CM-type for E.

If A is simple, then any number field with the correct degree acting on A must be a CM
field, but in general this is not true. For example, if C' is an elliptic curve with complex
multiplication by E, then C' x C has an action (up to isogeny) of Ms(FE), and therefore of
any field embedding into Ms(E). But this includes all quadratic extensions of £, which need
not be CM.

Just as it is possible to associate to any abelian variety with suitable action a CM type,
we can also associate to a CM type an abelian variety of that type.

For a CM type (E,®), write C® for a direct sum of copies of C indexed by ®, each
with the corresponding FE-action, and also write ® for the morphism Op — C® sending

T = ((7)),-

Proposition 1.1. With the notation above, the image ®(Og) C C® is a lattice, and the
quotient C®/®(Og) is an abelian variety A of CM-type (E,®), with the map ip : E —
End®(Ag) given by the action of @ on the p’th factor. Moreover any other pair (A,i) of
CM-type (E,®) is E-isogenous to (As,ig).

Proof. To show that the image of Op is a lattice, we just need to show that tensoring with R
gives all of C®. By linearity this reduces to showing that for each ¢ we have o(Or)®@zR ~ C;
fixing the embedding ¢, we can think of this as just Op ®z, R, which is the same thing as
Op®zQ®pueR=E®q,R~F®p,R~Csince F is imaginary quadratic over F.

To show that the quotient is an abelian variety, it suffices to write down a Riemann
form; one can work out that (u,v) + Trg/g(auv*) works, where * is the unique nontrivial
automorphism of F over F' and « is a totally imaginary element of E, i.e. one such that
a* = —a. By construction (Ag,ie) is of CM-type (E, ®).

Finally, suppose that (A,7) is of CM type (F,®), so that Lie(A) is isomorphic as an
FE ®g C-module to C®. There is a canonical lattice A such that A(C) = Lie(A4)/A, and so
A(C) is isomorphic to C*/A, and the image of QA is stable under the action of E via .
Therefore it must be equal to ®(E) up to multiplication by some invertible scalar in £ ®qg R.
After rescaling the isomorphism Lie(A) ~ C® by this scalar, we can assume QA = ®(FE), so
there is some lattice A’ in £ mapping to A; but any such lattice is contained in %OE for
N sufficiently large, and so there is an isogeny C*/®(Og) — C®/®(NAN') = C®/NA defined
over E. But multiplication by N gives an isogeny A(C) = Lie(A)/A ~ C*/A — C®/NA
over E, and so A is E-isogenous to C®/®(Og) = Ag. O

We can also define CM types for abelian varieties defined over any (sufficiently large)
subfield &k of C in the same way. We say that a complex variety V has a model over k if there
exists a variety Vy and an isomorphism (V5)c = V, where (V5)c denotes the base change to
C along Spec C — Speck.

Proposition 1.2. Let (A, i) be an abelian variety of CM-type (E, ®) over C. Then (A, 1) has
a model over QQ, unique up to isomorphism, which is also an abelian variety with CM-type

(B, ®).
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Proof. To see uniqueness, it suffices to observe that the functor sending abelian varieties
over Q to their base change to C is fully faithful. The torsion points on A(k) are Zariski
dense for abelian varieties A and any algebraically closed field k, and over any such k the
N-torsion points are isomorphic to (Z/NZ)*3m4 5o any map of abelian varieties Ac — Bc
is defined by its restriction to torsion points, all of which are defined over Q. Thus any
automorphism of C/Q fixes the morphism on torsion points and thus on the whole variety,
i.e. every morphism Ac — B is actually defined over Q and therefore this functor is fully
faithful.

It remains to show existence, i.e. that if (A, i) is of CM-type (E, ®) then it actually does
arise from some model over Q. Consider the ring R generated over Q by the coefficients of
the polynomials defining A and i. There are finitely many of these, so R is finitely generated
over Q. Any maximal ideal m of R has residue field a finite extension of Q, i.e. Q itself
since it is algebraically closed; call the reduction of (A, %) modulo m a specialization of (A, ).
Then any such specialization (A’,4’) is also of CM-type (E, ®), since passing from C to R to
Q does not change the eigenvalues of the action of some generator of £ on the tangent space
of A. By Proposition 1.1, the base change (A’,i')c is therefore isogenous to (A,i) over E
since both have CM-type (E,®). The kernel H of this isogeny is a subgroup of the torsion
points of A’(C), which as above are all defined over Q and so we can quotient by the kernel
to get a pair (A’/H, i) which is a model over Q for (A, 7). O

Note that a model over Q implies a model over some number field: A is defined over Q
by some polynomials, the coefficients of which all lie in Q and thus are each in some number
field. Taking the compositum of these fields gives a number field over which A is defined.

Proposition 1.2 implies for example that any elliptic curve over C of CM-type must
have algebraic j-invariant, since the curve must be defined over Q and the j-invariant is an
algebraic function of the coordinates.

We say that an abelian variety A over a number field K has good reduction at a prime
p of K if it extends to an abelian scheme A over Ok ,. Let A=A X0y, k be the special
fiber of A, i.e. the fiber over the finite field & = Ok /p. This is called the reduction of A
modulo p, and turns out to be independent of the choice of A. There is an isomorphism of

Tate modules V;(A) ~ V;(A) and an inclusion of endomorphism rings End(A) < End(A)
compatible with this isomorphism, since both arise from the reduction.

There is a criterion for having good reduction over number fields, namely the Néron—
Ogg—Shafarevich criterion: an abelian variety A over a number field K has good reduction
at a prime p of K if there is a prime ¢ different from the characteristic of Ok /p such that
the inertia group at p acts trivially on T, A.

Proposition 1.3. Let (A,i) be an abelian variety of CM-type (E,®) over a number field
K C C, and let p be a prime ideal in Ok. After possibly replacing K by a finite extension,
A will have good reduction at p.

Proof. We apply the Néron—-Ogg—Shafarevich criterion. In our case, V;A ~ H;(Ac, Q)®Qy is
a free F®gQ-module of rank 1, since H;(Ac, Q) is one-dimensional over E. Thus the action
of Gal(Q/K) factors through this action, i.e. the action of some subgroup of (E ®¢ Q/)*,
which will automatically be compact. Any such subgroup will be a finite extension of a pro-¢
subgroup. On the other hand I is a finite extension of a pro-p group for p the characteristic
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of Ok /p, so the image of [ in this subgroup is finite; and by replacing K by a finite extension
we can kill the image of I, so by applying the criterion we conclude that A has good reduction
at p. O

Lemma 1.4. Let (A,i) be an abelian variety of CM-type (E, ®) over a number field K C C
having good reduction at p to (A,i) over Ok /p = F,. Then the Frobenius 7 = 75 of A lies
in i(E).

Proof. Tt suffices to show the claim after tensoring with @Q,, since whether 7 € i(F) is
determined by applying linear functionals which are independent of the base ring. Since V;A
is a free £ ®g Q-module of rank 1, so is V;A, and since 7 acts on V;A and commutes with

the action of ®Q Qf it is in EIldE®QQZ WA = E(E) ®Q Qz. [l

In particular, given such a pair (A,i) with good reduction at p, identifying E with
its image under i we get an element m € FE, which by the Weil conjectures for abelian
varieties over finite fields is a g-integer, i.e. an algebraic integer satisfying || = /g for every
embedding into C.

We’d like to be able to pin down 7. As an element of E, up to a unit this is the same
thing as specifying ord,(7) for every place v of E. In fact, ord,(r) = 0 for v t p and 7 is
determined up to a root of unity by specifying its valuation only at v dividing p, by the
following lemma.

Lemma 1.5. Let m and @' be q-integers in a number field E, with ord,(7) = ord,(n’) for
every v|p, where p = charF,. Then ©' = (m for some root of unity ¢ in E, and ord,(r) =
ord,(7") = 0 for every finite place v { p.

Proof. Consider the automorphism of Q[r] sending 7 + ¢/7. In particular ¢/ is also an
algebraic integer, so ord,(¢/m) = ord,(q) — ord,(7w) > 0 for every v and so ord,(7w) = 0
for every finite v { p for any algebraic integer 7 and in particular also for 7’. Therefore
ord,(m) = ord,(n’) for every v, and since both are g-integers |r|, = |7’|, for every place

(finite or infinite) of v, i.e. |7'/m|, = 1 for every v; this is true only for roots of unity. O

Indeed, we cannot hope to do better than specifying © up to a root of unity, because
different choices of (A,7) with the same CM-type, though in the same isogeny class, may
have different Frobenius elements; all these Frobenii will differ only by roots of unity, but we
cannot eliminate all ambiguity. Up to this ambiguity, though, we can specify 7 as follows.

In the situation above, for each prime v of F over p let H, = H, , be the set of embeddings
E — K such that the inverse image of p is the prime ideal corresponding to v.

Theorem 1.6 (Shimura-Taniyama). Suppose that (A,17) is any abelian variety of CM-type
(E,®) over a number field K containing all conjugates of E, and p is a prime of K over p
with residue field O /p ~ F, such that A has good reduction at p. Then for every place v of
E over p, we have

1 H,|

ord,(m) = ord,(q) - A
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We hope that such a formula is compatible with complex conjugation, and ours is: we
have 77 = ¢ and so
ord,(m) + ord,(7) = ord,(q)
and
ord, (7) = ordg (),
and similarly B
dNH;=®NH,.
Therefore our formula gives
|® N H,| + PN Hpl

ord,(q) = ord,(m) 4 ord,(7) = ord,(q) ) :

which in turn is just

dUP)NH,
( |H>| | oo

as desired. In fact the formula of the theorem is the only one which is compatible with
complex conjugation in this sense.

Any finitely generated Op-module M can be written uniquely as @, Og/p;" for ideals p;
and integers r; > 1. Write |M |p,, for the ideal [ [, p;*, which is well-defined by the uniqueness
of this decomposition.

In particular if A is an abelian variety of dimension g over F, with a homomorphism
i : Og — End(A) for E a number field of degree 2¢g over Q, this makes Lie(A) into an
Opg-module. It turns out that |Lie(A)|op, is the ideal generated by the Frobenius (74).

In the situation of Theorem 1.6, since replacing A with an isogenous variety does not
change the validity of the theorem we may do so to assume that i(Og) C End(A). By
assumption A has good reduction at p, and so extends to an abelian scheme A over Ok,.
This is smooth of relative dimension g and so the tangent space T" over O, is a free Ok -
module of rank ¢, with the corresponding action of O, whose base change to K recovers

Lie(A) and to F, recovers Lie(A).

If p is unramified in E, then T ®p, , K ~ K?® since (A,7) has CM-type (E,®), and
this isomorphism restricts to an isomorphism of Og-module T" = O}};’p, ie. T is a direct
sum of copies of Ok, indexed by ¢ € ® with the action by ¢ : Op = O C Ok,. Thus
Lie(A) = T ®o,, Ok,p/p is a direct sum of copies of Ok ,/p ~ F, cach with the action of
Op by ¢/p : Op = Og — Ok, - Ok,/p, and so as Og-modules the ¢’th factor is (the
preimage under ¢ of) the norm Nmy /(g p, and so | Lie(A)|o,, which we observed earlier is
just (m4), is the product of these ideals. For v a place of E over p, the only ¢ which contribute
a nontrivial term to ord, are those which are the preimage of p under some embedding of F

into K, i.e. those in H,, so

ord,(q) -

ord,(m) = Z deg(p/¢(v)).

pePNH,

We’ve assumed p is unramified in F, so ord,(p) = 1 for v|p and so ord,(q) = deg(p/p), so
deg(p/p(v)) = —2E0/F) _ The denominator is just |H,| and is independent of ¢, so this is

~ deg(p(v)/p)”
|® N H,l

ord,(m) = ord,(q) T
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as claimed.

Without the assumption that p is unramified, the proof becomes more complicated but
will still work. However it is actually not necessary: the unramified case suffices to prove the
main theorem of complex multiplication (Theorem 2.2), which in turn implies Theorem 1.6.

2. THE MAIN THEOREM

We now turn to describing the action of complex multiplication. In the dimension 1 case,
elliptic curves, curves with complex multiplication by a CM field E generate the maximal
abelian extension E*" of E, by describing the action of Gal(E*"/E) on the curve and its
torsion points and then applying class field theory. We now want to extend this theory to
higher-dimensional abelian varieties. In this case we need to introduce a reflex field E*,
which is the same as F in the one-dimensional case, such that complex multiplication by £
corresponds to the action of Gal(E***/E*). We then interpret this description in terms of
the action of Aut(C/E*) on the complex points of a certain Shimura variety.
To define the reflex field, we need the following equivalence.

Proposition 2.1. Let (E,®) be a CM type. The following conditions on a subfield E* of Q
are equivalent:

(a) the set of o € Gal(Q/Q) which fix E* are exactly those which fix ®;
(b) E* is generated over Q by 3 4 ¢(a) fora € E;

(c) E* is the smallest subfield k of Q such that there exists a k-vector space V' with an
action of E such that
Tr(a|V) = Z o(a

ped

for every a € F.

Any of these conditions uniquely specifies a number field E*; we call this field the reflex
field of (E, ®).

Proof. First, suppose that o fixes ®; then certainly it fixes everything of the form s €
dp(a) for a € E, and conversely if o fixes such a sum then it must be permuting the ¢, so
conditions (a) and (b) are equivalent. If k is a field as in (c), then it contains every element
as in (b) and so contains the field specified by (b). On the other hand the field from (b)
does in fact have such an action: there is a representation of E* with character the sum of
the ¢ € ® (since (a) and (b) are equivalent), which extends by zero to an action of E with
trace ) g ¢(a), so the field from (b) satisfies the condition of (c) and is contained in any
other such field, so is the smallest such field. n

By condition (c), there exists an E*-vector space V with an action of E such that

Tre(a|V) = Zcp

ped
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for every a € E; we could equivalently regard V' as an E* ®q E-vector space, or as an
E-vector space with an E-linear action of £*. The reflex norm is the homomorphism Ng- :
Resg+/0(Gm) — Resg/g(Gm) sending

a — detg(alV)

for every a € E*. Since V is unique up to an isomorphism of E ®q E£*-algebras, this
homomorphism depends only on E and ® (since E* depends only on them).

If (A,4) is an abelian variety of CM-type (£, ®) over C. We know (by Proposition 1.2)
that (A,4) has a model over Q, so we only need to study the action of automorphisms of Q
rather than all of C; for any field K over which (A, ) is defined, Lie(A) gives a K-vector
space with an action of E' by Trg(a| Lie(4)) = > 4 ¢(a) for a € E, and so by condition
(¢) K must contain E*.

Theorem 2.2. Let (A,i) be an abelian variety of CM-type (E,®) over C, and let o €

Gal(Q/E*). For any s € Aj., whose image under Af. , — Af. — E“\AJL. Ay

Gal(E*®*/E*) is o, there exists a unique E-linear isogeny o : A — oA such that a(Ng-«(s) -
x) = ox for every x € VyA.

Proof. Observe that (cA,o0i) is of CM type (E,o®). Since o fixes E* by definition, by
Proposition 2.1 (a) it fixes @, i.e. 0@ = P, so (0A,0i) is also of CM type (E,®), and
therefore by Proposition 1.1 there is an F-isogeny o : A — g A.
On Vy(A), the composition

Vi(4) L% Vi d) LU vy a)
is E-linear and Aj-linear, i.e. linear over ¥ ®g Ay = Ags. The Tate module is one-
dimensional over Ag ¢, so this composition must be given by multiplication by some element
a of Ag, s- Since a is well-defined up to an element of £, a is well-defined, i.e. depends only
on o, as an element of EX\A% ;. Thus we get a map Gal(E**"/E*) — E*\AJ ; sending

o to a, which we can check is a homomorphism. Composing with the reciprocity map
E*\AF. ; — Gal(E*?/E*) this gives a map

E\AL. ; — EX\Ag ¢

We might guess that this is the morphism induced from Ng-. It suffices to check this on
the Frobenius elements (1,...,1,m,,1,...) where 7, is a uniformizer for Og-, and is in the
vth place for every place v, since these generate A7, e

By Proposition 1.2, the abelian variety (A, i) with CM type (£, ®) is actually defined over
some number field K; by enlarging K suitably, we can assume that it contains all conjugates
of F and has good reduction at a prime p unramified over its intersection v with Og-«, which
is over a prime p unramified in F. (Strictly speaking these conditions fail for some primes,
but by restricting to the ray class group we could obtain all primes.)

Recall from the proof of Theorem 1.6 that the ideal generated by the Frobenius 7 of A
at p is given by

=[] ¢ (Nmg /e ().

ped
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For V' = Lie(A), this is just Ne.(Nmg/g-(p)), which is Ng-(Op N p) for some integer f
(namely the degree of the extension of residue fields corresponding to p over O Np). On
the other hand 7 is given by ¢/, up to some isogenies as above, and so ¢ is sent under this
map to Ne«(Og Np). Thus the map is the one induced from Ng-«, so in particular for any
z € V;}A and o, s as in the statement of the theorem, a™!(cx) = ax for a the image of s
under the map E*\AL. ; — E*\Af ; (up to changing a by a constant) which we know is
just Ng-(s). Therefore a=!(ocx) = Ng«(s) -  and so a(Ng-(s) - ) = ox. O
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