
Moduli interpretation of Shimura varieties∗

Avi Zeff

Our next goal is to interpret Shimura varieties as moduli spaces classifying certain data,
just as e.g. modular curves classify (generalized) elliptic curves with some level structure.
We’ll start by looking at certain special kinds of Shimura varieties which have a good moduli
interpretation, and then see how far we can push this.

1. Shimura varieties of PEL type

We first look at Shimura varieties arising from symplectic actions of Q-algebras with involu-
tion. In particular, suppose that B is a semisimple Q-algebra with an involution ∗ : b 7→ b∗,
and (V, ψ) is a symplectic B-module, i.e. a B-module V with a symplectic form ψ such that
ψ(bu, v) = ψ(u, b∗v) for every b ∈ B. This gives rise to a Shimura datum as follows.

Write GLB(V ) for the group of automorphisms of V as a B-module. We can define an
algebraic subgroup G of GLB(V ) such that G(Q) is the subgroup consisting of elements g
such that ψ(gx, gy) = µ(g)ψ(x, y) for every x, y ∈ V , where µ(g) is some nonzero rational
number depending on g. For the other part of the Shimura datum, we need a homomorphism
h : S → GR satisfying suitable properties, or more precisely a conjugacy class of such
homomorphisms; for now assume we have such a homomorphism h, and let X be its G(R)-
conjugacy class. Then, once we make these conditions more precise and add a few on G,
the pair (G,X) is a Shimura datum, called a PEL Shimura datum, and gives rise to a PEL
Shimura variety, or a Shimura variety of PEL type.

The letters PEL stand for polarization, endomorphism, and level structure. The reason
for this is that PEL Shimura varieties are moduli spaces classifying abelian varieties with
polarization, a (class of) endomorphism(s), and some level structure. For motivation, we
state the following theorem, even though we haven’t yet rigorously defined a PEL Shimura
datum.

Theorem 1.1. Let (G,X) be a PEL Shimura datum, and let K ⊂ G(Af ) be a compact open
subgroup. Then ShK(G,X) classifies abelian varieties with polarization, an endomorphism,
and level structure: in particular on complex points ShK(G,X)(C) classifies isomorphism
classes of tuples (A, i, s, ηK), where

• A is a complex abelian variety,

• s is a polarization, up to sign, of the Hodge structure H1(A,Q),

• i is a homomorphism B → End0(A) = End(A)⊗Z Q, and

• ηK is a K-orbit of B ⊗ Af -linear isomorphisms η : V (Af ) → Vf (A) sending ψ to an
A×f -multiple of s,

such that there exists a B-linear isomorphism a : H1(A,Q)→ V sending s to a Q×-multiple
of ψ, such that the cocharacter S 3 r 7→ a ◦ hA(r) ◦ a−1 ∈ G is in X.

∗These notes are based on chapters 6-9 of [1].
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1 SHIMURA VARIETIES OF PEL TYPE

Here V (Af ) = V ⊗QAf , Vf (A) is the Tate module Q⊗ lim←−N
A[N ] of A, and hA is the map

given on real points by the map C× → GL(H1(A,R)) associated to the canonical complex
structure on H1(A,R) (since we can write A(C) as Cg/Λ, H1(A,R) ' H1(A,Z) ⊗ R '
Λ⊗ R ' Cg).

This is exactly the sort of moduli structure we hope for. Consider the simple case

B = Q, ∗ = id, V = Q2 with the symplectic form given by the matrix J =

(
−1

1

)
. Then

GLB(V ) = G(Q) = GL2(Q) by an explicit computation, and the resulting Shimura variety
is just a modular curve (of some level K). The existence of an isomorphism V (Af )→ Vf (A)
implies that Vf (A) must be rank 2 over Af , so A must be an elliptic curve, the data of i
is trivial since End0(A) is already a Q-algebra in a canonical way, and there is a unique
polarization of the Hodge structure on H1(A,Q) for an elliptic curve A so the data of s is
also trivial. Thus Theorem 1.1 in this case just gives the modular description of modular
curves.

To say more, we need to briefly discuss semisimple Q-algebras with involution. First, we
classify semisimple k-algebras with involution for an algebraically closed field.

Proposition 1.2. Let (B, ∗) be a semisimple k-algebra with involution for an algebraically
closed field k. Then (B, ∗) is isomorphic to a product of k-algebras with involution of the
following types (for some integer n):

(A) Mn(k)×Mn(k) with (a, b)∗ = (bT, aT);

(C) Mn(k) with b∗ = bT (orthogonal type);

(BD) M2n(k) with b∗ = JbTJ−1, where J =

(
−In

In

)
(symplectic type).

Proof. Since B is semisimple, we can decompose it as a product B = B1 × · · ·Br of simple
k-algebras which are the minimal two-sided ideals of B. Applying ∗, we get B = B∗ =
B∗1 × · · ·B×r , which by uniqueness just permutes the Bi; so the simple k-algebras with
involution are either simple k-algebras or pairs of k-algebras interchanged by ∗.

If B is a simple k-algebra, since k is algebraically closed it must be of the form Mn(k)
for some n, and the theorem of Skolem and Noether says that the involution ∗ must be of
the form b∗ = ubTu−1 for some u ∈ B = Mn(k). In particular b = (b∗)∗ = u(ubTu−1)Tu−1 =
u(u−1)T buTu−1 = (uTu−1)−1buTu−1 for every b, so uTu−1 is in the center of Mn(k), which is
just k. Call this c, so uTu−1 = c and so uT = cu. Since u = (uT)T = (cu)T = cuT = c2u
and u is invertible, we must have c = ±1, i.e. uT = ±u, so either u is symmetric or skew-
symmetric. By choosing a suitable basis we can assume u is the identity if it is symmetric
or J if skew-symmetric, and thus of either type (C) or (BD) respectively.

On the other hand, if B is the product of two simple k-algebras exchanged by ∗, then
B 'Mm(k)×Mn(k) for some m and n, and ∗ gives an isomorphism between the two factors
and so m = n. We can write ∗ as the composition of some involution � on Mn(k) with the
operation of switching between the two factors, i.e. (a, b)∗ = (a�, b�). Since we can choose
the basis of each factor independently, we don’t have to worry about the symplectic case,
and so we can assume � is just transposition, i.e. this is of type (A).
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1 SHIMURA VARIETIES OF PEL TYPE

For a simple Q-algebra with involution (B, ∗), we say that it is of type (A), (C), or (BD)
if its base change to Q is, so that semisimple Q-algebras with involution again decompose
into these types. In particular, the associated algebraic group G is then (at least over a
sufficiently large field) a unitary group, i.e. type A, if B is of type (A), a symplectic group
if B is of type (C), and an orthogonal group if B is of type (BD). (Note that these last two
are exchanged from the obvious guess from the proposition; this is essentially because the
form ψ is already symplectic.)

Let k be either Q or R. We say that a semisimple k-algebra with involution (B, ∗) is
positive if TrB/k(b∗b) is positive for every nonzero b ∈ B.

Proposition 1.3. Let (B, ∗) be a semisimple R-algebra with positive involution, and let
(V, ψ) be a symplectic (B, ∗)-module. Assume that (B, ∗) has all factors of type (A) or (C),
and let C be the centralizer of B in EndR(V ). Then there exists a homomorphism of R-
algebras h : C→ C such that h(z̄) = h(z)∗ and the pairing (u, v) 7→ ψ(u, h(i)v) is symmetric
and positive-definite.

Proof sketch. The only nontrivial thing is to give a suitable element J = h(i) of C, i.e. a
complex structure satisfying the relations ψ(Ju, Jv) = ψ(u, v), ψ(v, Jv) > 0 for all nonzero
v. It suffices to prove the claim for the simple factors, which are either of type (A) or (C);
in either case B is incarnated as either an endomorphism ring of some vector space W with
a positive-definite symmetric form or the product of two such endomorphism rings, in either
case with the involution given by the adjoint endomorphism. Thus in either case we can
explicitly write down a basis and find a suitable complex structure.

Suppose that we have a semisimple R-algebra with positive involution (B, ∗) and a sym-
plectic (B, ∗)-module (V, ψ) and corresponding algebraic group G. Let h : S → GR be a
homomorphism, which induces a Hodge structure on V , notated (V, h), and a pairing given
by (u, v) 7→ ψ(u, h(i)v); suppose that this Hodge structure is of type {(−1, 0), (0,−1)}, and
that the pairing is symmetric and positive-definite. Then if J = h(i) we have a canonical
isomorphism of complex vector spaces (V, J) ' V −1,0, compatible with the actions of B;
let t(b) be the trace of b ∈ B acting on either space, i.e. t(b) = TrC(b|(V, J)). Note that t
depends on h, through J = h(i).

Let G′ be the subgroup of G satisfying the additional requirement that µ(g) = det g = 1.
Let F be the center of B, so that [B : F ] = n2 for some n; then V is also an F -vector space,
and dimF V is divisible by n. Write m = 1

n
dimF V ; in the case (BD), this is the dimension of

the space on which the orthogonal group corresponding to B acts. We will only be interested
in the case where m is even, and denote this by (D).

Proposition 1.4. With the notation above,

(a) the map t : B → C uniquely determines the map h : S→ GR up to G′(R)-conjugacy;

(b) if (B, ∗) is of type (A), then the isomorphism class of (V, ψ) is uniquely determined by
t; if it is of type (C) or (D), it is uniquely determined by dimk V ;

(c) the centralizer of h in G(R) is connected.
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1 SHIMURA VARIETIES OF PEL TYPE

Proof sketch. We can similarly go through type by type and check that if we view B as
a suitable endomorphism ring, the trace reduces to the trace on the corresponding space,
which is simple and so has a unique form of the appropriate type.

Proposition 1.5. Assume that (B, ∗) is simple of type (A) or (C), and let (V, ψ) be a
symplectic (B, ∗)-module. Then there exists a homomorphism h : S → GR such that (V, h)
has type {(−1, 0), (0,−1)} and 2πiψ is a polarization of (V, h), and h is unique up to G(R)-
conjugation.

Proof. Tensoring with R decomposes V as a direct sum of real vector spaces over real places
of some number field over Q contained in B; thus it suffices to find a suitable component
on each real factor. But this is done in Proposition 1.3. We can then observe that the
conditions on h from Proposition 1.3 give us the desired ones for (V, h) and ψ here; finally
for each type we can construct the trace on VR independently of h via this decomposition,
which by Proposition 1.4 determines h up to unique isomorphism.

More generally, suppose we have (B, ∗) and (V, ψ) such that the resulting algebraic group
G is connected, and that there exists a homomorphism h : S→ GR such that (V, h) has type
{(−1, 0), (0,−1)} and (u, v) 7→ ψ(u, h(i)v) is symmetric and positive-definite. Then we write
X for the G(R)-conjugacy class, and call (G,X) a PEL Shimura datum. Thus Proposition
1.5 tells us that if (B, ∗) is simple of type (A) or (C), then the data (B, ∗, V, ψ) uniquely
gives rise to a Shimura datum.

This makes Theorem 1.1 precise. However we will defer its proof to section 2 for a more
general discussion of moduli structure.

One thing we have not shown yet is that the data (G,X) we have called PEL Shimura data
are actually Shimura data at all. To see this, consider the following example, generalizing
the example of modular curves.

Let B = Q, with the trivial involution, and V = Q2n, with ψ given by the matrix J ,
or more generally any symplectic form. Then G = GSp2n, or GSp(ψ), of type C, so by
Proposition 1.5 there is a unique conjugacy class X(ψ) of homomorphisms S → GSp(ψ)/R,
corresponding to the set of complex structures J on V (R) such that ψ(Ju, Jv) = ψ(u, v) for
u, v,∈ V . We can check that (G,X(ψ)) satisfies the conditions to be a Shimura datum. First,
we can decompose V (C) as V + ⊕ V −, where V + = V −1,0 and V − = V 0,−1, so that h(z) acts
on V + and V − by multiplication by z and z̄ respectively (since they are complex conjugates).
Then End(V (C)) = Hom(V +, V +) ⊕ Hom(V +, V −) ⊕ Hom(V −, V +) ⊕ Hom(V −, V −), and
h(z) acts on the factors by 1, z̄/z, z/z̄, 1 respectively, so the action is of the type permitted for
Shimura data. The image of h(i) = J is a Cartan involution since J is a complex structure
giving a polarization, and GSp(ψ) is simple and GSp(ψ)ad = Sp2n is noncompact, so all three
axioms hold.

In fact, more is true: the “extra” axioms (4), (5), (6) all hold as well! The weight
homomorphism on r is just multiplication by r, which is defined over Q; the center of G is
Gm, and Q× is discrete in A×f ; and the center Gm is already split over Q. Thus this is as
nice a Shimura datum as we could ask for, and is called the Siegel Shimura datum; by the
above, it is also a PEL Shimura datum.

In particular, for any (B, ∗, V, ψ), the action of B defines the algebraic group G as a
subgroup of GSp(V, ψ), and composing with this inclusion sends any suitable homomor-
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1 SHIMURA VARIETIES OF PEL TYPE

phism h : S → GR to an element of the Siegel Shimura datum X(ψ). This embedding
of Shimura data immediately implies that (G,X) satisfies conditions (1) through (4) since
(GSp(ψ), X(ψ)) does. In particular any PEL Shimura datum is in fact a Shimura datum,
and so has an associated Shimura variety.

We can also look at the Shimura variety for the Siegel Shimura datum, and try to verify
Theorem 1.1 explicitly in this case.

The data that Theorem 1.1 claims corresponds to a point of ShK(GSp(ψ), X(ψ)) =
GSp(ψ)(Q)\X(ψ) × GSp(ψ)(Af )/K is a tuple (A, i, s, ηK), where A is a complex abelian
variety with a polarization s up to sign and ηK is a K-orbit of isomorphisms V (Af )→ Vf (A)
sending ψ to an A×f -multiple of s, such that there is an isomorphism a : H1(A,Q) → V
sending s to a Q×-multiple of ψ and that the cocharacter r 7→ a ◦ hA(r) ◦ a−1 is in X(ψ).
(As in the case of modular curves, the data of i is trivial since B = Q.

The existence of the isomorphism a implies that V and H1(A,Q) are isomorphic as Q-
vector spaces, i.e. dimA = n. Thus the only data about A we need to keep track of, since
we only remember isomorphism classes, is the rational Hodge structure on H1(A,Q) with its
polarization and symplectic form s, which amounts to a vector space W = H1(A,Q) with a
Hodge structure h of type {(−1, 0), (0,−1)} and an isomorphism a : W → V satisfying this
property on cocharacters.1

Given this data, we can form a point of X(ψ) from a: by definition, each a gives rise
to an element ah of X(ψ) by r 7→ a ◦ h(r) ◦ a−1, where h = hA can be thought of as the
cocharacter corresponding to the Hodge structure on W . From η, we can find an element
of GSp(ψ)(Af ) by aAf

◦ η : V (Af ) → W (Af ) → V (Af ), all of which are compatible with
the symplectic structures. However, a is not part of our datum, so we want to quotient
by the choice of a; and η is only defined up to the right action of K, so we also need to
quotient on the right by K. Two possible choices of a differ by the automorphism group of
(V, ψ), i.e. GSp(ψ)(Q), and so we have a well-defined map from the set of such tuples to
GSp(ψ)(Q)\X(ψ)×GSp(ψ)(Af )/K.

First, we check that this map descends to the set of isomorphism class of tuples. Suppose
that f : (W,h, ηK)→ (W ′, h′, η′K) is an isomorphism of triples as above, and let a : W → V
be a suitable isomorphism in the first case and a′ : W ′ → V similarly in the second case.
These have images [ah, aAf

◦ η] and [a′h′, a′Af
◦ η′]. Since f is an isomorphism, it induces an

isomorphism (W,h) → (W ′, h′) of Hodge structures such that f ◦ η : V (Af ) → W (Af ) →
W ′(Af ) and η′ : V (Af ) → W ′(Af ) agree up to the action of K, i.e. η′K = f ◦ ηK. In
particular a′Af

◦ η′K = a′Af
◦ f ◦ ηK = a ◦ ηK since f takes a to a′, and so since f gives an

isomorphism of Hodge structures up to rational multiples [ah, aAf
◦ η = [a′h′, a′Af

◦ η′].
Next, we check that the map is injective on isomorphism classes. Suppose that (W,h, ηK)

and (W ′, h′, η′K) map to the same class, i.e. (choosing a and a′ as above) we have (ah, aAf
◦

η) = (qa′h′, q ◦a′Af
◦η′ ◦k) for some q ∈ GSp(ψ)(Q) and k ∈ K. Since a′ is only defined up to

the action of GSp(ψ)(Q), we can replace a′ by q−1a′, so the right-hand side is (a′h′, a′Af
◦η′◦k),

and then a′ ◦ a−1 gives an isomorphism between the two triples.
Finally, for any [x, g], we can define a triple by W = V , h = x, and η = g which maps to

1This relies on an omitted theorem, that the category of complex abelian varieties up to isogeny is
equivalent to the category of polarizable rational Hodge structures of type {(−1, 0), (0,−1)}. This is a
consequence of GAGA plus a result on polarizability of complex tori.
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2 SHIMURA VARIETIES OF HODGE TYPE

[x, g], so the map is also surjective. Thus we obtain Theorem 1.1 in this case.
In the case where ψ is given by J , we can describe X(ψ) very explicitly as the Siegel

upper half plane H±n , the space of symmetric complex n × n matrices with imaginary part
either positive-definite or negative-definite. The Shimura varieties ShK(GSp(ψ), X(ψ)) are
then the higher-dimensional analogues of modular curves.

2. Shimura varieties of Hodge type

In section 1, we looked at Shimura data arising from symplectic actions of semisimple Q-
algebras with involution; the key property from which we deduced that these were in fact
Shimura data was that there was an embedding of Shimura data into some Siegel Shimura
datum (GSp(ψ), X(ψ)). In fact we can work more generally using just this property:

Definition 2.1. A Shimura datum (G,X) is of Hodge type if there is a symplectic space
(V, ψ) over Q and an injection ρ : G ↪→ GSp(ψ) carrying X to X(ψ). The corresponding
Shimura varieties ShK(G,X) are also said to be of Hodge type.

Thus in particular Shimura varieties of PEL type are also of Hodge type.
If µ : GSp(ψ) → Gm is the character sending g to the multiplier µ(g) such that

ψ(gx, gy) = µ(g)ψ(x, y), then µ ◦ ρ : G → Gm is a character of G which we will again
denote by µ. Write Q(r) for the vector space Q with the action of G by g · q = µ(g)rq for
q ∈ Q(r) and g ∈ G. For any h ∈ X, one can show that (Q(r), µ ◦ h) is a rational Hodge
structure of type (−r,−r), so this is the standard notation for Hodge structures.

It turns out that for any embedded G, we can describe it by the stabilizer of certain
tensors.

Lemma 2.2. Let (G,X) be a Shimura datum of Hodge type, embedding into (GSp(ψ), X(ψ)).
There exists some finite set of multilinear maps ti : V × · · · × V → Q(ri) such that G is the
subgroup of GSp(ψ) fixing the ti.

Proof. First, observe that a multilinear map t : V × · · · × V → Q is the same thing as an
element of (V ⊗m)∨ for some integer m. A theorem of Chevalley states that any faithful self-
dual representation G→ GL(V ) gives G as the stabilizer in GL(V ) of some one-dimensional
subspace L of a representation W of GL(V ). For any nonzero t ∈ L ⊗ L∨ ⊂ W ⊗ W∨,
the group of g ∈ GL(V ) fixing t is exactly the stabilizer G of L. We can write the tensor
representation W ⊗ W∨ as a subrepresentation of a sum of representations of the form
V ⊗mi ⊗ (V ⊗ni)∨; we can then decompose t into terms ti from each such factor. But the
symplectic form ψ gives an isomorphism of G-representations ψ : V × V → Q(1), since
ψ(gx, gy) = µ(g)ψ(x, y), and thus an isomorphism V ' V ∨ ⊗ Q(1), so V ⊗mi ⊗ (V ⊗ni) '
(V ∨)⊗(mi+ni) ⊗ Q(mi) = Hom(V ⊗(mi+ni),Q(mi)), and so in particular we can write each ti
in the form Hom(V ⊗mi ,Q(ri)) for some mi, ri, and the group fixing all the ti is G.

This is enough to let us state—and prove!—a moduli interpretation for Shimura varieties
of Hodge type.

Theorem 2.3. Let (G,X) be a Shimura datum of Hodge type, with a fixed embedding into the
Siegel modular datum (GSp(ψ), X(ψ)) corresponding to some symplectic space (V, ψ) and pre-
sentation as the fixed group of some multilinear maps ti. Then for any compact open subgroup
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2 SHIMURA VARIETIES OF HODGE TYPE

K ⊂ G(Af ), ShK(G,X)(C) classifies isomorphism classes of tuples (W,h, s0, s1, . . . , sn, ηK),
where

• h is a rational Hodge structure on W of type {(−1, 0), (0,−1)},

• s0 is a polarization, up to sign, of (W,h),

• s1, . . . , sn are multilinear maps W × · · · ×W → Q(ri), and

• ηK is a K-orbit of isomorphisms V (Af )→ W (Af ) sending ψ to an A×f -multiple of s0
and each ti to si,

such that there exists an isomorphism a : W → V sending s0 to a Q×-multiple of ψ, each si

to ti, and h to an element of X.

Here an isomorphism of such tuples is an isomorphism of rational Hodge structures
(W,h)→ (W ′, h′) sending s0 to s′0 up to a Q×-multiple, each si to s′i, and ηK to η′K.

Proof. The map from the set of tuples to ShK(G,X)(C) = G(Q)\X ×G(Af )/K is given by
choosing an isomorphism a : W → V satisfying the conditions of the theorem and sending
the tuple (W,h, s0, s1, . . . , sn, ηK) to the pair (ah, aAf

◦ η), where ah : S→ GR is defined by
(ah)(z) = a ◦ h(z) ◦ a−1 and is assumed to be in X. Since aAf

◦ η by definition fixes the ti
and preserves the symplectic structure, it is in G(Af ); again η is only defined up to the right
action of K and our choice of a is up to the action of G(Q), so this gives a map from the set
of isomorphisms into the double quotient G(Q)\X×G(Af )/K. Verifying that it descends to
isomorphism classes and is a bijection is as in the discussion for Siegel Shimura varieties.

This solves the problem of providing a moduli interpretation for Shimura varieties of
Hodge type, but it is not very satisfying: for example, it doesn’t obviously specialize to
Theorem 1.1 in the case of PEL Shimura varieties. To improve this interpretation, we
introduce the notion of Hodge tensors.

Let t : V ×· · ·×V → Q(r) be a multilinear map, i.e. t(gv1, . . . , gvm) = µ(g)rt(v1, . . . , vm).
For h ∈ X, this gives a morphism of Hodge structures (V, h)⊗m → Q(r). Since Q(r) has
weight −2r and (V, h) has weight −1, it follows that t is zero unless m = 2r.

Let A be an abelian variety over C, and let W = H1(A,Q). The cohomology of abelian
varieties over C is given by Hm(A,Q) ' Hom(

∧m W,Q). For t ∈ H2r(A,Q), we say that t
is a Hodge tensor for A if the corresponding map W⊗2r →

∧2r W → Q(r) is a morphism of
Hodge structures.

We can now rephrase Theorem 2.3.

Theorem 2.4. Let (G,X) be a Shimura datum of Hodge type, with a fixed embedding into the
Siegel modular datum (GSp(ψ), X(ψ)) corresponding to some symplectic space (V, ψ) and pre-
sentation as the fixed group of some multilinear maps ti. Then for any compact open subgroup
K ⊂ G(Af ), ShK(G,X)(C) classifies isomorphism classes of tuples (A, s0, s1, . . . , sn, ηK),
where

• A is a complex abelian variety,

• s0 is a polarization, up to sign, of the rational Hodge structure on H1(A,Q),
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3 SHIMURA VARIETIES OF ABELIAN TYPE

• s1, . . . , sn are Hodge tensors for A or its powers, and

• ηK is a K-orbit of isomorphisms V (Af ) → Vf (A) sending ψ to an A×f -multiple of s0
and each ti to si,

such that there exists an isomorphism a : H1(A,Q) → V sending s0 to a Q×-multiple of ψ,
each si to ti, and h to an element of X.

Here an isomorphism of tuples is as above; note that isomorphisms of abelian varieties
are after inverting isogenies.

Proof. Again, the data of A is equivalent to the data of H1(A,Q) with its rational Hodge
structure, so by the discussion above the data of the Hodge tensors si is equivalent to the
data of the multilinear maps from Theorem 2.3 and so the claim follows immediately from
Theorem 2.3.

Note that now Theorem 1.1 follows immediately: in the special case of PEL Shimura
varieties, for any set of generators b1, . . . , bm of the semisimple Q-algebra B we can use the
tensors tbi

: (x, y) 7→ ψ(x, by). The g which fix all of these tbi
are exactly those which

commute with b, i.e. G, so the action of B on A (up to isogeny) is the same as the data
of the Hodge tensors (or equivalently multilinear maps to Q(ri)) si sent to the tbi

by the
isomorphisms η−1 and a of the theorem.

3. Shimura varieties of abelian type

The most general Shimura varieties we’ve considered so far are those of Hodge type, which
are moduli spaces for abelian varieties with tensor and level structures. In order to obtain
moduli interpretations for larger classes of Shimura varieties, we need to consider a more
general category of objects. These will be abelian motives.

When working with Hodge structures, one straightforward operation is the direct sum.
When the Hodge structures come from the cohomology of abelian varieties, this corresponds
to disjoint union, so we first want to enlarge our category to complex varieties V whose
connected components Vi are abelian varieties. In particular H∗(V,Q) acquires a polarizable
Hodge structure from its summands H∗(Vi,Q), which in turn derive their Hodge structures
from H1(Vi,Q). Write H∗(V,Q)(m) for H∗(V,Q)⊗Q(m).

An abelian motive over C is a triple (V, e,m), where V is a variety over C whose compo-
nents are abelian varieties, e is an idempotent of the rational Hodge structure on H∗(V,Q)
(i.e. e2 = e, so e induces a splitting of the Hodge structure into the images of e and 1 − e)
and m is an integer. For example, if A is an abelian variety, the projection to the ith
component ei : H∗(A,Q) → H i(A,Q) ⊂ H∗(A,Q) is an idempotent; we write the mo-
tive (A, ei, 0) as hi(A). A morphism of abelian motives (V, e,m) → (V ′, e′,m′) is a map
e′ ◦ f ◦ e : H∗(V,Q)→ H∗(V ′,Q) where f : H∗(V,Q)→ H∗(V ′,Q′) is a ring homomorphism
of degree m′ −m.

We can also define a direct sum (for motives with m in common) and tensor product:

(V, e,m)⊕ (V ′, e′,m) = (V t V ′, e⊕ e′,m),

8
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(V, e,m)⊗ (V ′, e′,m′) = (V × V ′, e⊗ e′,m+m′).

We can also define a dual motive: if V is pure of dimension d, then set

(V, e,m)∨ = (V, eT, d−m)

where eT denotes the transpose of e as a correspondence.
Given an abelian motive (V, e,m) over C, we can define its cohomology H(V, e,m) to be

eH∗(V,Q)(m). For example, H(hi(A)) = eiH∗(A,Q) = H i(A,Q). This defines a functor H
from the category of abelian motives to the category of polarizable rational Hodge structures,
and it commutes with all three operations above, direct sum, tensor product, and duality.
If a rational Hodge structure (W,h) is in the essential image of this functor, i.e. (W,h) '
H(V, e,m) for some abelian motive (V, e,m), we say that (W,h) is abelian. For example, if
A is an elliptic curve then Q(1) '

∧2H1(A,Q) ' H2(A,Q)∨ = h2(A)∨, so Q(1) is abelian.
Observe that H then gives an equivalence of categories between the category of abelian
motives and the category of abelian rational Hodge structures.

To define Shimura varieties of abelian type, we first go back to connected Shimura vari-
eties. For the Siegel Shimura datum (GSp(ψ), X(ψ)) for (V, ψ), the corresponding connected
Shimura data are of the form (Sp(ψ), X(ψ)±), where Sp(ψ) is the usual symplectic group for
ψ and X(ψ)± corresponds to complex structures J on V (R) such that ψ(Ju, Jv) = ψ(u, v)
as usual and additionally ±ψ(u, Jv) > 0, so e.g. ψ(u, Jv) > 0 in the positive case.

Definition 3.1. (a) A connected Shimura datum (H,X+) is of primitive abelian type if H
is simple and there exists a symplectic space (V, ψ) over Q and an injection H → Sp(ψ)
taking X+ to X(ψ)+.

(b) A connected Shimura datum (H,X+) is of abelian type if H is isogenous to a product
of Hi with (Hi, X

+
i ) each of primitive abelian type with the isogeny

∏
i Hi → H taking∏

i X
+
i to X+.

(c) A Shimura datum (G,X) is of abelian type if (Gder, X+) is of abelian type.

(d) Let K ⊂ G(Af ) be a compact open subgroup. A Shimura variety ShK(G,X), resp. a
connected Shimura variety Sh◦K(G,X+), is of abelian type if (G,X), resp. (G,X+), is.

The following proposition, due to Milne, relates the abelian condition for Shimura data
and Hodge structures.

Proposition 3.2. Let (G,X) be a Shimura datum satisfying the additional axioms (4) (the
weight homomorphism wX is rational) and (6) (the connected component of the center Z◦

splits over a CM field), and additionally suppose that there is a character µ : G→ Gm such
that µ ◦ wX : Gm → Gm is −2. Then (G,X) is of abelian type if and only if for some
(equivalently, all) representation (V, ρ) of G and every h ∈ X, the Hodge structure (V, ρ ◦ h)
is abelian.

Let (G,X) be a Shimura datum of abelian type satisfying the conditions of the propo-
sition, and let ρ : G → GL(V ) be a faithful representation of G. Suppose there exists a
pairing ψ : V × V → Q such that ψ(gx, gy) = µ(g)mψ(x, y) for some fixed m, and ψ is a
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polarization of (V, ρ ◦ h) for every h ∈ X. Then as in the proof of Lemma 2.2 the faithful
representation ρ allows us to express G as the group satisfying this condition on ψ and fixing
some multilinear maps ti : V × · · · × V → Q(ri). Fix such ti.

Theorem 3.3. With the above notation, ShK(G,X)(C) classifies the isomorphism classes
of tuples (A, s0, s1, . . . , sn, ηK), where

• A is an abelian motive,

• s0 is a polarization, up to sign, for the rational Hodge structure H(A),

• s1, . . . , sn are tensors for A, and

• ηK is a K-orbit of isomorphisms V (Af ) → Vf (A) sending ψ to an A×f -multiple of s0
and each ti to si,

such that there exists an isomorphism a : H(A)→ V sending s0 to a Q×-multiple of ψ, each
si to ti, and h to an element of X.

Here a tensor for A means a tensor for H(A), i.e. an element of H(A)⊗m ⊗ (H(A)⊗n)∨

for some integers m,n.
If A = h1(A)∨ for an abelian variety A, by an abuse of notation, so thatH(A) = H1(A,Q),

then the Hodge condition of Theorem 2.4 on the si is automatically satisfied due to the
conditions on the ti and so we recover Theorem 2.4, and thus Theorem 1.1.

Proof sketch. The same proof as for Theorem 2.3 shows that ShK(G,X)(C) classifies tuples
(W,h, s0, s1, . . . , sn, ηK), with (W,h) a rational Hodge structure replacing H(A) and other-
wise the same conditions. The isomorphism a shows that every such (W,h) is isomorphic to
(V, ρ ◦ h′) for some h′ ∈ X, so by the conditions we assumed on (G,X) and Proposition 3.2
every (W,h) is abelian. Therefore by the equivalence of categories between abelian rational
Hodge structures and abelian motives we can write every (W,h) as H(A) for some abelian
motive A.

In fact, it is possible to classify the connected Shimura data of abelian type; this is due
to Deligne. Suppose that (G,X+) is a connected Shimura datum where G is simple. If Gad

is of type A, B, or C, then (G,X+) is of abelian type. If Gad is of type E6 or E7, then there
is no symplectic embedding and so (G,X+) is not of abelian type. If Gad is of type D, the
situation is ambiguous: (G,X+) may be of abelian type, or one of two things may go wrong.

(a) It may be that there is some nontrivial finite algebraic subgroup N ⊂ G in the kernel of
every (G,X+)→ (Sp(ψ), X(ψ)+), so that any such morphism fails to be an embedding.
In this case for any normal N ′ containing N the quotient (G/N ′, X+) is of abelian type
(at least assuming G is the universal cover of Gad), but (G,X+) is not.

(b) There may be no homomorphism G → Sp(ψ) at all, in which case certainly (G,X+)
cannot be abelian.
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This last can happen for Lie-theoretic reasons: over R, in general Gad may decompose as a
product of simple groups, and if there is a homomorphism GR → Sp(ψ)R (and thus on all
factors) which descends to Q, the action of the Galois group permutes the Dynkin diagrams
of the factors and so all of the factors must have the nodes corresponding to these symplectic
representations in the same position. In particular the opposite node, corresponding to a
cocharacter from S, must all be in the same position, which is the case for some but not all
groups of type D.

4. General abelian varieties

One hopes that, generalizing the examples we’ve discussed, any Shimura variety with ra-
tional weight (axiom (4)) will classify isomorphism classes of motives with some additional
structure. More precisely, given a rational representation ρ : G→ GL(V ), we get a family of
Hodge structures ρR ◦ h on V for h ∈ X; if the weight of (G,X) is defined over Q, we hope
that these Hodge structures occur naturally in the cohomology of some algebraic varieties.
However this is not known2 for any Shimura varieties more general than of abelian type.

Consider for example a quaternion algebra B over a totally real field F , with G the
algebraic group with G(Q) = B×, so that B ⊗ R decomposes as a product of algebras, one
for each embedding F ↪→ R, which are either M2(R) or the Hamiltonian quaternions H, and
so G(R) is a product of GL2(R) and H×. We can define a homomorphism h : C× → G by

sending a + bi to 1 in the H× terms and

(
a b
−b a

)
in the GL2(R) terms. There are several

possibilities:

(a) If B is already split over F , then (G,X) is of PEL type, and by Theorem 1.1 its Shimura
variety classifies abelian varieties of dimension [F : Q] with an F -action since G(R)
factors as a product of [F : Q] copies of GL2(R), each of which acts on a 2-dimensional
space with a corresponding action of F . These are Hilbert or Hilbert-Blumenthal
varieties, and generalize modular curves.

(b) If B does not split over F but every factor base changed to R splits, then (G,X) is
again of PEL type, and we again get an action of each GL2(R) factor but now the
corresponding semisimple Q-algebra is not F but B, and so the dimension changes:
ShK(G,X) classifies abelian varieties of dimension 2[F : G] with a B-action (by isoge-
nies).

(c) If B does not split over F and has at least one factor not splitting over R, then (G,X) is
of abelian type, but the weight is not rational: wX sends a real number r to the element
of (F ⊗ R)× '

∏
F ↪→RR given by r for the split terms and 1 for the nonsplit terms.

Let T = ResF/QGm be the torus over Q such that T (Q) = F×. Then wX : Gm → TR is

defined over the subfield of the algebraic numbers fixed by the subgroup of Gal(Q/Q)
fixing the embeddings F ↪→ R corresponding to the nonsplit factors, which is not Q for
F different from Q. Thus although ShK(G,X) will classify certain Hodge structures,
these do not arise from the cohomology of algebraic varieties, i.e. they are not motivic,
since then they would be rational.

2At least at the time of Milne’s notes (originally 2004, most recently revised 2017).
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(d) If B is split over R at exactly one place, then the Shimura variety is a curve; these
were Shimura’s original examples, namely Shimura curves.

In the setup of PEL Shimura varieties where we have a semisimple Q-algebra with involu-
tion (B, ∗) and a symplectic (B, ∗)-module (V, ψ), if G is the corresponding algebraic group
we saw in Theorem 1.1 that under certain conditions (e.g. G is of type A (with V having even
reduced dimension) or C) that there is a unique G(R)-conjugacy class X giving a Shimura
datum and the set of abelian varieties with a B-action and suitable structure are classified
by the Shimura varieties for (G,X). In general this fails to be true, but under weaker con-
ditions they are still represented by some algebraic variety, called the PEL modular variety
attached to (B, ∗, V, ψ). In general it is a finite disjoint union of Shimura varieties. This
suggests that to get a more general moduli interpretation we should broaden the definition
of Shimura varieties to allow G to be nonconnected, and the study of boundaries of Shimura
varieties suggests that we should similarly allow X to be a finite cover of a conjugacy class
of homomorphisms S → GR. This is exactly what we did in the case of zero-dimensional
Shimura varieties, and so would make those into genuine Shimura varieties (unsurprisingly,
the zero-dimensional ones).
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