Moduli interpretation of Shimura varieties®
Avi Zeft

Our next goal is to interpret Shimura varieties as moduli spaces classifying certain data,
just as e.g. modular curves classify (generalized) elliptic curves with some level structure.
We'll start by looking at certain special kinds of Shimura varieties which have a good moduli
interpretation, and then see how far we can push this.

1. SHIMURA VARIETIES OF PEL TYPE

We first look at Shimura varieties arising from symplectic actions of Q-algebras with involu-
tion. In particular, suppose that B is a semisimple Q-algebra with an involution * : b — b*,
and (V1) is a symplectic B-module, i.e. a B-module V' with a symplectic form 1 such that
(bu,v) = (u,b*v) for every b € B. This gives rise to a Shimura datum as follows.

Write GLp(V') for the group of automorphisms of V' as a B-module. We can define an
algebraic subgroup G of GLg (V) such that G(Q) is the subgroup consisting of elements g
such that ¥(gz, gy) = u(g)Y(z,y) for every x,y € V, where pu(g) is some nonzero rational
number depending on g. For the other part of the Shimura datum, we need a homomorphism
h : S — Gpg satisfying suitable properties, or more precisely a conjugacy class of such
homomorphisms; for now assume we have such a homomorphism h, and let X be its G(R)-
conjugacy class. Then, once we make these conditions more precise and add a few on G,
the pair (G, X) is a Shimura datum, called a PEL Shimura datum, and gives rise to a PEL
Shimura variety, or a Shimura variety of PEL type.

The letters PEL stand for polarization, endomorphism, and level structure. The reason
for this is that PEL Shimura varieties are moduli spaces classifying abelian varieties with
polarization, a (class of) endomorphism(s), and some level structure. For motivation, we
state the following theorem, even though we haven’t yet rigorously defined a PEL Shimura
datum.

Theorem 1.1. Let (G, X) be a PEL Shimura datum, and let K C G(Ay) be a compact open
subgroup. Then Shy (G, X) classifies abelian varieties with polarization, an endomorphism,
and level structure: in particular on complex points Shy (G, X)(C) classifies isomorphism
classes of tuples (A, i,s,nK), where

e A is a complex abelian variety,
e s is a polarization, up to sign, of the Hodge structure Hi(A,Q),
e i is a homomorphism B — End’(A) = End(A) ®z Q, and

o nK is a K-orbit of B ® Ay-linear isomorphisms n : V(Ay) — V;(A) sending ¢ to an
A7 -multiple of s,

such that there exists a B-linear isomorphism a : H1(A, Q) — V sending s to a Q*-multiple
of 1, such that the cocharacter S> r v+ aohu(r)oa™ € G is in X.

*These notes are based on chapters 6-9 of [1].
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Here V(Af) = V®gAy, Vi(A) is the Tate module Q®lim A[N] of A, and h, is the map
given on real points by the map C* — GL(H;(A,R)) associated to the canonical complex
structure on Hi(A,R) (since we can write A(C) as C9/A, H;(A,R) ~ H1(A,Z) @ R ~
AR~ (C9).

This is exactly the sort of moduli structure we hope for. Consider the simple case
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GLp(V) = G(Q) = GLy(Q) by an explicit computation, and the resulting Shimura variety
is just a modular curve (of some level K'). The existence of an isomorphism V (Ay) — V;(A)
implies that V;(A) must be rank 2 over Ay, so A must be an elliptic curve, the data of i
is trivial since End’(A) is already a Q-algebra in a canonical way, and there is a unique
polarization of the Hodge structure on H;(A, Q) for an elliptic curve A so the data of s is
also trivial. Thus Theorem 1.1 in this case just gives the modular description of modular
curves.

To say more, we need to briefly discuss semisimple Q-algebras with involution. First, we
classify semisimple k-algebras with involution for an algebraically closed field.

B =Q, * =id, V = Q? with the symplectic form given by the matrix J = (

Proposition 1.2. Let (B,x*) be a semisimple k-algebra with involution for an algebraically
closed field k. Then (B,x) is isomorphic to a product of k-algebras with involution of the
following types (for some integer n):

(A) M, (k) x M,(k) with (a,b)* = (bT,a");
(C) M, (k) with b* = b (orthogonal type);

(BD) My, (k) with b* = JbTJ =L, where J = (I _I"> (symplectic type).

Proof. Since B is semisimple, we can decompose it as a product B = B; X --- B,. of simple
k-algebras which are the minimal two-sided ideals of B. Applying *, we get B = B* =
B} x ---B), which by uniqueness just permutes the B;; so the simple k-algebras with
involution are either simple k-algebras or pairs of k-algebras interchanged by .

If B is a simple k-algebra, since k is algebraically closed it must be of the form M, (k)
for some n, and the theorem of Skolem and Noether says that the involution % must be of
the form b* = ub™u~? for some u € B = M, (k). In particular b = (b*)* = u(ubTu )Tu™! =
wlu™HTouTu™t = (uTu™) " touTu™! for every b, so uTu~! is in the center of M, (k), which is
just k. Call this ¢, so u'u™! = ¢ and so u" = cu. Since u = (u")7 = (cu)" = cu’ = u
and wu is invertible, we must have ¢ = £1, i.e. u' = Fu, so either u is symmetric or skew-
symmetric. By choosing a suitable basis we can assume w is the identity if it is symmetric
or J if skew-symmetric, and thus of either type (C) or (BD) respectively.

On the other hand, if B is the product of two simple k-algebras exchanged by *, then
B ~ M,, (k) x M, (k) for some m and n, and * gives an isomorphism between the two factors
and so m = n. We can write * as the composition of some involution ¢ on M, (k) with the
operation of switching between the two factors, i.e. (a,b)* = (a®,b°). Since we can choose
the basis of each factor independently, we don’t have to worry about the symplectic case,
and so we can assume ¢ is just transposition, i.e. this is of type (A). O]
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For a simple Q-algebra with involution (B, %), we say that it is of type (A), (C), or (BD)
if its base change to Q is, so that semisimple Q-algebras with involution again decompose
into these types. In particular, the associated algebraic group G is then (at least over a
sufficiently large field) a unitary group, i.e. type A, if B is of type (A), a symplectic group
if B is of type (C), and an orthogonal group if B is of type (BD). (Note that these last two
are exchanged from the obvious guess from the proposition; this is essentially because the
form ® is already symplectic.)

Let k be either Q or R. We say that a semisimple k-algebra with involution (B,*) is
positive if Trp/,(b*b) is positive for every nonzero b € B.

Proposition 1.3. Let (B,*) be a semisimple R-algebra with positive involution, and let
(V,4) be a symplectic (B, *)-module. Assume that (B, *) has all factors of type (A) or (C),
and let C' be the centralizer of B in Endg(V). Then there exists a homomorphism of R-
algebras h : C — C' such that h(Z) = h(z)* and the pairing (u,v) — ¥ (u, h(i)v) is symmetric
and positive-definite.

Proof sketch. The only nontrivial thing is to give a suitable element J = h(i) of C, i.e. a
complex structure satisfying the relations ¢ (Ju, Jv) = ¥(u,v), ¥ (v, Jv) > 0 for all nonzero
v. It suffices to prove the claim for the simple factors, which are either of type (A) or (C);
in either case B is incarnated as either an endomorphism ring of some vector space W with
a positive-definite symmetric form or the product of two such endomorphism rings, in either
case with the involution given by the adjoint endomorphism. Thus in either case we can
explicitly write down a basis and find a suitable complex structure. O

Suppose that we have a semisimple R-algebra with positive involution (B, x) and a sym-
plectic (B, *)-module (V,1) and corresponding algebraic group G. Let h : S — Gg be a
homomorphism, which induces a Hodge structure on V', notated (V, h), and a pairing given
by (u,v) + 1(u, h(i)v); suppose that this Hodge structure is of type {(—1,0), (0, —1)}, and
that the pairing is symmetric and positive-definite. Then if J = h(i) we have a canonical
isomorphism of complex vector spaces (V,J) ~ V=10 compatible with the actions of B;
let ¢(b) be the trace of b € B acting on either space, i.e. t(b) = Trc(b|(V,J)). Note that ¢
depends on h, through J = h(7).

Let G’ be the subgroup of G satisfying the additional requirement that p(g) = det g = 1.
Let F be the center of B, so that [B : F] = n? for some n; then V is also an F-vector space,
and dimg V is divisible by n. Write m = % dimp V; in the case (BD), this is the dimension of
the space on which the orthogonal group corresponding to B acts. We will only be interested
in the case where m is even, and denote this by (D).

Proposition 1.4. With the notation abowve,
(a) the map t : B — C uniquely determines the map h : S — Gg up to G'(R)-conjugacy;

(b) if (B, x) is of type (A), then the isomorphism class of (V, 1) is uniquely determined by
t; if it is of type (C) or (D), it is uniquely determined by dimy V;

(c) the centralizer of h in G(R) is connected.



1 SHIMURA VARIETIES OF PEL TYPE

Proof sketch. We can similarly go through type by type and check that if we view B as
a suitable endomorphism ring, the trace reduces to the trace on the corresponding space,
which is simple and so has a unique form of the appropriate type. O

Proposition 1.5. Assume that (B,x) is simple of type (A) or (C), and let (V,¢) be a
symplectic (B, x)-module. Then there exists a homomorphism h : S — Ggr such that (V,h)
has type {(—1,0), (0, —1)} and 27i) is a polarization of (V,h), and h is unique up to G(R)-
conjugation.

Proof. Tensoring with R decomposes V' as a direct sum of real vector spaces over real places
of some number field over Q contained in B; thus it suffices to find a suitable component
on each real factor. But this is done in Proposition 1.3. We can then observe that the
conditions on h from Proposition 1.3 give us the desired ones for (V) k) and 1 here; finally
for each type we can construct the trace on Vg independently of h via this decomposition,
which by Proposition 1.4 determines A up to unique isomorphism. O]

More generally, suppose we have (B, *) and (V1) such that the resulting algebraic group
G is connected, and that there exists a homomorphism h : S — Gg such that (V, h) has type
{(—=1,0),(0,—1)} and (u,v) — ¥ (u, h(i)v) is symmetric and positive-definite. Then we write
X for the G(R)-conjugacy class, and call (G, X) a PEL Shimura datum. Thus Proposition
1.5 tells us that if (B, ) is simple of type (A) or (C), then the data (B,x*,V, ) uniquely
gives rise to a Shimura datum.

This makes Theorem 1.1 precise. However we will defer its proof to section 2 for a more
general discussion of moduli structure.

One thing we have not shown yet is that the data (G, X)) we have called PEL Shimura data
are actually Shimura data at all. To see this, consider the following example, generalizing
the example of modular curves.

Let B = Q, with the trivial involution, and V' = Q?*, with v given by the matrix J,
or more generally any symplectic form. Then G = GSp,,, or GSp(¢), of type C, so by
Proposition 1.5 there is a unique conjugacy class X (¢) of homomorphisms S — GSp(¢) r,
corresponding to the set of complex structures J on V(R) such that ¢ (Ju, Jv) = ¥ (u,v) for
u,v, € V. We can check that (G, X (¢)) satisfies the conditions to be a Shimura datum. First,
we can decompose V(C) as VT @V~ where VT = V10 and V= = V%1 50 that h(z) acts
on VT and V'~ by multiplication by z and Z respectively (since they are complex conjugates).
Then End(V(C)) = Hom(V*, V") @ Hom(V ", V™) @ Hom(V~,V*) @ Hom(V~, V™), and
h(z) acts on the factors by 1, z/z, z/z, 1 respectively, so the action is of the type permitted for
Shimura data. The image of h(i) = J is a Cartan involution since J is a complex structure
giving a polarization, and GSp(1)) is simple and GSp(1))2! = Sp,,, is noncompact, so all three
axioms hold.

In fact, more is true: the “extra” axioms (4), (5), (6) all hold as welll The weight
homomorphism on 7 is just multiplication by 7, which is defined over Q; the center of G is
Gm, and Q* is discrete in A?; and the center G,, is already split over Q. Thus this is as
nice a Shimura datum as we could ask for, and is called the Siegel Shimura datum; by the
above, it is also a PEL Shimura datum.

In particular, for any (B,x*,V,1), the action of B defines the algebraic group G as a
subgroup of GSp(V,), and composing with this inclusion sends any suitable homomor-
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phism h : S — Gg to an element of the Siegel Shimura datum X (). This embedding
of Shimura data immediately implies that (G, X) satisfies conditions (1) through (4) since
(GSp(v), X (v)) does. In particular any PEL Shimura datum is in fact a Shimura datum,
and so has an associated Shimura variety.

We can also look at the Shimura variety for the Siegel Shimura datum, and try to verify
Theorem 1.1 explicitly in this case.

The data that Theorem 1.1 claims corresponds to a point of Shx(GSp(¢), X(¢)) =
GSp(¥)(Q)\X () x GSp(v)(Af)/K is a tuple (A,i,s,nK), where A is a complex abelian
variety with a polarization s up to sign and nk is a K-orbit of isomorphisms V (Ay) — V;(A)
sending ¢ to an Af-multiple of s, such that there is an isomorphism a : Hy(4,Q) — V
sending s to a Q*-multiple of ¥ and that the cocharacter r — a o ha(r)oa™! is in X ().
(As in the case of modular curves, the data of 7 is trivial since B = Q.

The existence of the isomorphism a implies that V' and H;(A, Q) are isomorphic as Q-
vector spaces, i.e. dim A = n. Thus the only data about A we need to keep track of, since
we only remember isomorphism classes, is the rational Hodge structure on H;(A, Q) with its
polarization and symplectic form s, which amounts to a vector space W = H;(A, Q) with a
Hodge structure h of type {(—1,0),(0,—1)} and an isomorphism a : W — V satisfying this
property on cocharacters.!

Given this data, we can form a point of X (¢) from a: by definition, each a gives rise
to an element ah of X (¢)) by r — a o h(r) o a™!, where h = hu can be thought of as the
cocharacter corresponding to the Hodge structure on W. From 7, we can find an element
of GSp(v)(As) by aa, on : V(Ay) — W(As) — V(Ay), all of which are compatible with
the symplectic structures. However, a is not part of our datum, so we want to quotient
by the choice of a; and 7 is only defined up to the right action of K, so we also need to
quotient on the right by K. Two possible choices of a differ by the automorphism group of
(V,4), i.e. GSp(¢)(Q), and so we have a well-defined map from the set of such tuples to
GSp(¥) @)\ X (1) x GSp(w)(A)/K.

First, we check that this map descends to the set of isomorphism class of tuples. Suppose
that f : (W, h,nK) — (W' k', K) is an isomorphism of triples as above, and let a : W — V
be a suitable isomorphism in the first case and @’ : W' — V similarly in the second case.
These have images [ah, a, on] and [a'h, d} on]. Since f is an isomorphism, it induces an
isomorphism (W, h) — (W’ k') of Hodge structures such that fon: V(A;) — W(Af) —
W'(Ay) and ' = V(Af) — W/(Ay) agree up to the action of K, ie. 7K = fonK. In
particular axf on'K = axf o fonK =aonk since f takes a to a’, and so since f gives an
isomorphism of Hodge structures up to rational multiples [ah, as, o n = [a'}/, af&f on].

Next, we check that the map is injective on isomorphism classes. Suppose that (W, h, nK)
and (W', b, 7' K) map to the same class, i.e. (choosing a and a’ as above) we have (ah, as, o
n) = (qa’h’, qoaf&f on'ok) for some ¢ € GSp(¢)(Q) and k € K. Since @’ is only defined up to
the action of GSp(1)(Q), we can replace a’ by ¢~'a’, so the right-hand side is (a’l/, a;xfon’ok),
and then a’ o a™! gives an isomorphism between the two triples.

Finally, for any [z, g], we can define a triple by W = V| h = x, and = g which maps to

!This relies on an omitted theorem, that the category of complex abelian varieties up to isogeny is
equivalent to the category of polarizable rational Hodge structures of type {(—1,0),(0,—1)}. This is a
consequence of GAGA plus a result on polarizability of complex tori.



2 SHIMURA VARIETIES OF HODGE TYPE

[z, g], so the map is also surjective. Thus we obtain Theorem 1.1 in this case.

In the case where ® is given by J, we can describe X (1) very explicitly as the Siegel
upper half plane H=, the space of symmetric complex n x n matrices with imaginary part
either positive-definite or negative-definite. The Shimura varieties Shy (GSp(v), X (1)) are
then the higher-dimensional analogues of modular curves.

2. SHIMURA VARIETIES OF HODGE TYPE

In section 1, we looked at Shimura data arising from symplectic actions of semisimple Q-
algebras with involution; the key property from which we deduced that these were in fact
Shimura data was that there was an embedding of Shimura data into some Siegel Shimura
datum (GSp(v), X (¢)). In fact we can work more generally using just this property:

Definition 2.1. A Shimura datum (G, X) is of Hodge type if there is a symplectic space
(V,4) over Q and an injection p : G — GSp(v) carrying X to X (¢)). The corresponding
Shimura varieties Shi (G, X)) are also said to be of Hodge type.

Thus in particular Shimura varieties of PEL type are also of Hodge type.

If w : GSp(v)) — Gy, is the character sending g to the multiplier u(g) such that
U(gz,gy) = w(g)(x,y), then pop : G — Gy, is a character of G which we will again
denote by pu. Write Q(r) for the vector space Q with the action of G by g - q = u(g)"q for
q € Q(r) and g € G. For any h € X, one can show that (Q(r),u o h) is a rational Hodge
structure of type (—r, —r), so this is the standard notation for Hodge structures.

It turns out that for any embedded G, we can describe it by the stabilizer of certain
tensors.

Lemma 2.2. Let (G, X) be a Shimura datum of Hodge type, embedding into (GSp(¢), X (¢)).
There exists some finite set of multilinear maps t; : V- x -+ x V. — Q(r;) such that G is the
subgroup of GSp(v) fixing the t;.

Proof. First, observe that a multilinear map ¢t : V x --- x V — Q is the same thing as an
element of (V®™)Y for some integer m. A theorem of Chevalley states that any faithful self-
dual representation G — GL(V) gives G as the stabilizer in GL(V') of some one-dimensional
subspace L of a representation W of GL(V'). For any nonzero t € L® LY C W @ WY,
the group of g € GL(V) fixing t is exactly the stabilizer G of L. We can write the tensor
representation W ® WV as a subrepresentation of a sum of representations of the form
Vemi @ (Vi)Y we can then decompose ¢ into terms t; from each such factor. But the
symplectic form @ gives an isomorphism of G-representations ¢ : V x V — Q(1), since
(g, gy) = u(g)(z,y), and thus an isomorphism V ~ VY ® Q(1), so V&™i @ (V") ~
(VV)@mitn) @ Q(m;) = Hom(VE(m+m) Q(m;)), and so in particular we can write each
in the form Hom(V®™ Q(r;)) for some m;, r;, and the group fixing all the ¢; is G. O

This is enough to let us state—and provel-—a moduli interpretation for Shimura varieties
of Hodge type.

Theorem 2.3. Let (G, X) be a Shimura datum of Hodge type, with a fized embedding into the
Siegel modular datum (GSp(v), X (¢)) corresponding to some symplectic space (V, 1) and pre-
sentation as the fized group of some multilinear maps t;. Then for any compact open subgroup
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K C G(Ay), Shi (G, X)(C) classifies isomorphism classes of tuples (W, h, sg, S1, . .., Sn, NK),
where

h is a rational Hodge structure on W of type {(—1,0), (0, —1)},

S s a polarization, up to sign, of (W, h),

® S1,...,8, are multilinear maps W x --- x W — Q(r;), and

nK is a K-orbit of isomorphisms V(Ay) — W (Ay) sending ¢ to an At -multiple of so
and each t; to s;,

such that there exists an isomorphism a : W — V' sending so to a Q> -multiple of ¥, each s;
to t;, and h to an element of X.

Here an isomorphism of such tuples is an isomorphism of rational Hodge structures
(W, h) — (W’ k') sending sq to sp up to a Q*-multiple, each s; to s, and nK to n'K.

Proof. The map from the set of tuples to Shx (G, X)(C) = G(Q)\X x G(Af)/K is given by
choosing an isomorphism a : W — V satisfying the conditions of the theorem and sending
the tuple (W, h, so, $1, . . -, 8n, 1K) to the pair (ah,as, on), where ah : S — G is defined by
(ah)(z) = aoh(z) o a™" and is assumed to be in X. Since ay, o7 by definition fixes the t;
and preserves the symplectic structure, it is in G(Ay); again 7 is only defined up to the right
action of K and our choice of a is up to the action of G(Q), so this gives a map from the set
of isomorphisms into the double quotient G(Q)\X x G(A)/K. Verifying that it descends to
isomorphism classes and is a bijection is as in the discussion for Siegel Shimura varieties. [l

This solves the problem of providing a moduli interpretation for Shimura varieties of
Hodge type, but it is not very satisfying: for example, it doesn’t obviously specialize to
Theorem 1.1 in the case of PEL Shimura varieties. To improve this interpretation, we
introduce the notion of Hodge tensors.

Lett: Vx---xV — Q(r) be a multilinear map, i.e. t(guvi,...,gvy) = u(g) t(vy, ..., vm).
For h € X, this gives a morphism of Hodge structures (V,h)®™ — Q(r). Since Q(r) has
weight —2r and (V, h) has weight —1, it follows that ¢ is zero unless m = 2r.

Let A be an abelian variety over C, and let W = H;(A, Q). The cohomology of abelian
varieties over C is given by H™(A,Q) ~ Hom(A™ W, Q). For t € H*(A,Q), we say that ¢
is a Hodge tensor for A if the corresponding map W% — /\27" W — Q(r) is a morphism of
Hodge structures.

We can now rephrase Theorem 2.3.

Theorem 2.4. Let (G, X) be a Shimura datum of Hodge type, with a fized embedding into the
Siegel modular datum (GSp(v), X (¢)) corresponding to some symplectic space (V, 1) and pre-
sentation as the fized group of some multilinear maps t;. Then for any compact open subgroup
K C G(Ay), Shi(G, X)(C) classifies isomorphism classes of tuples (A, so, S1, - -, Sns NK),
where

o A is a complex abelian variety,

e 5o is a polarization, up to sign, of the rational Hodge structure on Hy(A,Q),
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® si,...,8, are Hodge tensors for A or its powers, and

o nK is a K-orbit of isomorphisms V(Ay) — V;(A) sending ¢ to an A} -multiple of s
and each t; to s;,

such that there exists an isomorphism a : H1(A,Q) — V sending so to a Q™ -multiple of 1,
each s; to t;, and h to an element of X.

Here an isomorphism of tuples is as above; note that isomorphisms of abelian varieties
are after inverting isogenies.

Proof. Again, the data of A is equivalent to the data of H;(A,Q) with its rational Hodge
structure, so by the discussion above the data of the Hodge tensors s; is equivalent to the
data of the multilinear maps from Theorem 2.3 and so the claim follows immediately from
Theorem 2.3. O

Note that now Theorem 1.1 follows immediately: in the special case of PEL Shimura
varieties, for any set of generators by, ..., b, of the semisimple Q-algebra B we can use the
tensors tp, : (z,y) — ¥(x,by). The g which fix all of these t,, are exactly those which
commute with b, i.e. G, so the action of B on A (up to isogeny) is the same as the data
of the Hodge tensors (or equivalently multilinear maps to Q(r;)) s; sent to the t,, by the
isomorphisms 77! and a of the theorem.

3. SHIMURA VARIETIES OF ABELIAN TYPE

The most general Shimura varieties we've considered so far are those of Hodge type, which
are moduli spaces for abelian varieties with tensor and level structures. In order to obtain
moduli interpretations for larger classes of Shimura varieties, we need to consider a more
general category of objects. These will be abelian motives.

When working with Hodge structures, one straightforward operation is the direct sum.
When the Hodge structures come from the cohomology of abelian varieties, this corresponds
to disjoint union, so we first want to enlarge our category to complex varieties V' whose
connected components V; are abelian varieties. In particular H*(V, Q) acquires a polarizable
Hodge structure from its summands H*(V;, Q), which in turn derive their Hodge structures
from H,(V;, Q). Write H*(V,Q)(m) for H*(V,Q) ® Q(m).

An abelian motive over C is a triple (V, e, m), where V' is a variety over C whose compo-
nents are abelian varieties, e is an idempotent of the rational Hodge structure on H*(V, Q)
(i.e. €2 = e, so e induces a splitting of the Hodge structure into the images of e and 1 — ¢)
and m is an integer. For example, if A is an abelian variety, the projection to the ith
component €' : H*(A,Q) — H'(A,Q) C H*(A,Q) is an idempotent; we write the mo-
tive (A, e’,0) as h'(A). A morphism of abelian motives (V,e,m) — (V’,¢/,m’) is a map
dofoe: H(V,Q) — H*(V',Q) where f : H*(V,Q) — H*(V',Q') is a ring homomorphism
of degree m’ — m.

We can also define a direct sum (for motives with m in common) and tensor product:

(V.e,m) @ (Vi el,m)= VUV ede,m),
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(Vie,m) @ (VVel,m') = (V xV'ie®e,m+m).

We can also define a dual motive: if V' is pure of dimension d, then set
(‘/7 ¢, m)V = (‘/7 6T7 d— m)

where e’ denotes the transpose of e as a correspondence.

Given an abelian motive (V, e, m) over C, we can define its cohomology H(V,e, m) to be
eH*(V,Q)(m). For example, H(h'(A)) = ¢'H*(A,Q) = H'(A,Q). This defines a functor H
from the category of abelian motives to the category of polarizable rational Hodge structures,
and it commutes with all three operations above, direct sum, tensor product, and duality.
If a rational Hodge structure (W, h) is in the essential image of this functor, i.e. (W,h) ~
H(V,e,m) for some abelian motive (V, e, m), we say that (W, h) is abelian. For example, if
A is an elliptic curve then Q(1) ~ A” H1(A4,Q) ~ H2(A,Q)" = h2(A)Y, so Q(1) is abelian.
Observe that H then gives an equivalence of categories between the category of abelian
motives and the category of abelian rational Hodge structures.

To define Shimura varieties of abelian type, we first go back to connected Shimura vari-
eties. For the Siegel Shimura datum (GSp(v), X (¢)) for (V, ), the corresponding connected
Shimura data are of the form (Sp(¢), X (¢)*), where Sp(%) is the usual symplectic group for
¢ and X (10)* corresponds to complex structures J on V(R) such that ¢ (Ju, Jv) = ¥(u,v)
as usual and additionally £ (u, Jv) > 0, so e.g. ¥(u, Jv) > 0 in the positive case.

Definition 3.1. (a) A connected Shimura datum (H, X ™) is of primitive abelian type if H
is simple and there exists a symplectic space (V1) over Q and an injection H — Sp(v))
taking X to X ().

(b) A connected Shimura datum (H, X ™) is of abelian type if H is isogenous to a product
of H; with (H;, X;") each of primitive abelian type with the isogeny [[, H; — H taking
[T, X;" to XT.

(¢) A Shimura datum (G, X) is of abelian type if (G4, X*) is of abelian type.

(d) Let K C G(Ay) be a compact open subgroup. A Shimura variety Shy (G, X), resp. a
connected Shimura variety Sh} (G, X ™), is of abelian type if (G, X), resp. (G, X™), is.

The following proposition, due to Milne, relates the abelian condition for Shimura data
and Hodge structures.

Proposition 3.2. Let (G, X) be a Shimura datum satisfying the additional axioms (4) (the
weight homomorphism wx is rational) and (6) (the connected component of the center Z°
splits over a CM field), and additionally suppose that there is a character p: G — G, such
that powx : G, — Gy, is —=2. Then (G, X) is of abelian type if and only if for some
(equivalently, all) representation (V,p) of G and every h € X, the Hodge structure (V,poh)
15 abelian.

Let (G, X) be a Shimura datum of abelian type satisfying the conditions of the propo-
sition, and let p : G — GL(V') be a faithful representation of G. Suppose there exists a
pairing ¢ : V x V' — Q such that ¢(gz, gy) = pu(g)"¢(x,y) for some fixed m, and 1 is a
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polarization of (V) po h) for every h € X. Then as in the proof of Lemma 2.2 the faithful
representation p allows us to express GG as the group satisfying this condition on 1) and fixing
some multilinear maps ¢; : V' x -+ x V' — Q(r;). Fix such ¢,.

Theorem 3.3. With the above notation, Shx (G, X)(C) classifies the isomorphism classes
of tuples (A, sq, S1, ..., 5n,NK), where

e A is an abelian motive,
e 5o is a polarization, up to sign, for the rational Hodge structure H(A),
® S1,...,S8, are tensors for A, and

o nK is a K-orbit of isomorphisms V(Ay) — Vi(A) sending ¢ to an A? -multiple of s
and each t; to s;,

such that there exists an isomorphism a : H(A) — V sending sy to a Q*-multiple of 1, each
s; tot;, and h to an element of X.

Here a tensor for A means a tensor for H(A), i.e. an element of H(A)®™ @ (H(A)®")Y
for some integers m, n.

If A= h'(A)Y for an abelian variety A, by an abuse of notation, so that H(A) = H; (A, Q),
then the Hodge condition of Theorem 2.4 on the s; is automatically satisfied due to the
conditions on the ¢; and so we recover Theorem 2.4, and thus Theorem 1.1.

Proof sketch. The same proof as for Theorem 2.3 shows that Shy (G, X)(C) classifies tuples
(W, h, S0, 81, .-, 8n,nK), with (W, h) a rational Hodge structure replacing H(A) and other-
wise the same conditions. The isomorphism a shows that every such (W, h) is isomorphic to
(V,poh') for some ' € X, so by the conditions we assumed on (G, X) and Proposition 3.2
every (W, h) is abelian. Therefore by the equivalence of categories between abelian rational
Hodge structures and abelian motives we can write every (W, h) as H(A) for some abelian
motive A. O

In fact, it is possible to classify the connected Shimura data of abelian type; this is due
to Deligne. Suppose that (G, X ) is a connected Shimura datum where G is simple. If G2
is of type A, B, or C, then (G, XT) is of abelian type. If G* is of type Eg or E7, then there
is no symplectic embedding and so (G, X*) is not of abelian type. If G® is of type D, the
situation is ambiguous: (G, X ™) may be of abelian type, or one of two things may go wrong.

(a) It may be that there is some nontrivial finite algebraic subgroup N C G in the kernel of
every (G, X)) — (Sp(¢)), X(¢)"), so that any such morphism fails to be an embedding.
In this case for any normal N’ containing N the quotient (G/N’, X*) is of abelian type
(at least assuming G is the universal cover of G*), but (G, X™) is not.

(b) There may be no homomorphism G — Sp(¢) at all, in which case certainly (G, X™)
cannot be abelian.

10
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This last can happen for Lie-theoretic reasons: over R, in general G*! may decompose as a
product of simple groups, and if there is a homomorphism Gr — Sp(¥)r (and thus on all
factors) which descends to Q, the action of the Galois group permutes the Dynkin diagrams
of the factors and so all of the factors must have the nodes corresponding to these symplectic
representations in the same position. In particular the opposite node, corresponding to a
cocharacter from S, must all be in the same position, which is the case for some but not all
groups of type D.

4. GENERAL ABELIAN VARIETIES

One hopes that, generalizing the examples we've discussed, any Shimura variety with ra-
tional weight (axiom (4)) will classify isomorphism classes of motives with some additional
structure. More precisely, given a rational representation p : G — GL(V'), we get a family of
Hodge structures pg o h on V for h € X; if the weight of (G, X) is defined over Q, we hope
that these Hodge structures occur naturally in the cohomology of some algebraic varieties.
However this is not known? for any Shimura varieties more general than of abelian type.
Consider for example a quaternion algebra B over a totally real field F', with G the
algebraic group with G(Q) = B*, so that B ® R decomposes as a product of algebras, one
for each embedding F' — R, which are either Ms(R) or the Hamiltonian quaternions H, and
so G(R) is a product of GLy(R) and H*. We can define a homomorphism h : C* — G by

“ 2) in the GLo(R) terms. There are several

sending a + bi to 1 in the H* terms and (—b

possibilities:

(a) If Bis already split over F', then (G, X) is of PEL type, and by Theorem 1.1 its Shimura
variety classifies abelian varieties of dimension [F' : Q] with an F-action since G(R)
factors as a product of [F' : Q] copies of GLy(R), each of which acts on a 2-dimensional
space with a corresponding action of F. These are Hilbert or Hilbert-Blumenthal
varieties, and generalize modular curves.

(b) If B does not split over F' but every factor base changed to R splits, then (G, X) is
again of PEL type, and we again get an action of each GLy(R) factor but now the
corresponding semisimple (Q-algebra is not I’ but B, and so the dimension changes:
Shi (G, X) classifies abelian varieties of dimension 2[F : G| with a B-action (by isoge-
nies).

(c) If B does not split over F' and has at least one factor not splitting over R, then (G, X) is
of abelian type, but the weight is not rational: wy sends a real number r to the element
of (F ®R)* ~ [[z_zgR given by r for the split terms and 1 for the nonsplit terms.
Let T' = Resp/g G be the torus over Q such that T(Q) = F*. Then wx : Gy, — T is
defined over the subfield of the algebraic numbers fixed by the subgroup of Gal(Q/Q)
fixing the embeddings F' < R corresponding to the nonsplit factors, which is not Q for
F different from Q. Thus although Shy (G, X) will classify certain Hodge structures,
these do not arise from the cohomology of algebraic varieties, i.e. they are not motivic,
since then they would be rational.

2At least at the time of Milne’s notes (originally 2004, most recently revised 2017).

11



REFERENCES REFERENCES

(d) If B is split over R at exactly one place, then the Shimura variety is a curve; these
were Shimura’s original examples, namely Shimura curves.

In the setup of PEL Shimura varieties where we have a semisimple Q-algebra with involu-
tion (B, *) and a symplectic (B, *)-module (V,), if G is the corresponding algebraic group
we saw in Theorem 1.1 that under certain conditions (e.g. G is of type A (with V' having even
reduced dimension) or C) that there is a unique G(R)-conjugacy class X giving a Shimura
datum and the set of abelian varieties with a B-action and suitable structure are classified
by the Shimura varieties for (G, X). In general this fails to be true, but under weaker con-
ditions they are still represented by some algebraic variety, called the PEL modular variety
attached to (B,*,V,1). In general it is a finite disjoint union of Shimura varieties. This
suggests that to get a more general moduli interpretation we should broaden the definition
of Shimura varieties to allow G to be nonconnected, and the study of boundaries of Shimura
varieties suggests that we should similarly allow X to be a finite cover of a conjugacy class
of homomorphisms S — Ggr. This is exactly what we did in the case of zero-dimensional
Shimura varieties, and so would make those into genuine Shimura varieties (unsurprisingly,
the zero-dimensional ones).
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