Siegel-Weil examples
Avi Zeft

1. A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

Consider the lattice A := Z? C R?, with quadratic form Q(z,y) = 2% +y?. As for any lattice,
we can associate to it a theta function

Or(z) := Z gy — Z s

(z,y)eA z,yEZL

where ¢ = ¢?™*. Writing ro(n) for the number of pairs of integers (z,y) such that 22 +y* =n
for each n > 0, we can rewrite this as

Or(z2) = ng(n)q”.

n>0

To ensure convergence we restrict z to the upper half-plane.

I claim that this is a modular form of weight 1. Indeed, we will prove the following
stronger statement. Let A C R™ be an n-dimensional lattice with quadratic form @), and
suppose that A is unimodular, i.e. self-dual (or equivalently vol(R"/A) = 1).

Proposition 1.1. The theta function ©, of a unimodular lattice A is a modular form of
weight n/2 and level 4, i.e. it has weight n/2 for the action of I'1(4) on the upper half-plane.

Here I';(4) is the standard congruence subgroup of SLy(Z) consisting of matrices (CCL Z)
of determinant 1 such that a =d =1 (mod 4) and ¢ =0 (mod 4).

Proof. First, for z in the upper half-plane the growth condition on ©,(z) is immediate due
to the rapid convergence of the series and the exponential dependence on z; therefore we will
only concern ourselves with the transformation properties.

The appearance of the level 4 structure is nonobvious, and it is more natural to first
ask if ©, transforms correctly under the action of the full modular group SLy(Z), which is

11 -1

generated by ( 1) and (1 ) The first of these is clear: this is just the invariance
under z — z + 1, which follows from the fact that ©,(z) only depends on g = ¢*™*. The
second corresponds to a relation between ©,(—1/2) and ©,(z). We can explicitly write out

1 )
s} _ ) = —27er(x)/z.
() -2
TzEA
Suppose first that z = 7y for y > 0; then this is

1 i —27Q(x
() l) -5

TzEA



1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

Let f,(z) = e~2mQ@)/Y  Since A is unimodular, we can map it to Z" without rescaling and
thus apply Poisson summation to get

on (1) = X o)

TEL™

By standard Fourier analysis fo = fo, L.e. fo(z) = e ™@® is its own Fourier transform (since
Q(x) can be interpreted as the norm of x € A C R"); since Q() is a quadratic form we have
2Q(z)/y = Q((2/y)**z) and so f,(x) = e Q@MW) — £,((2/y)Y/22) has Fourier transform

" Y n/2 Y Y n/2 1Oz
y(l‘) - <§> 2 ( 517) B (5) €’ ( )y.
Therefore we ha\/e

1 ) y\"/2 1 y\"/2 1y Z\ /2 z
or (1) e ()= 0 B o= (e () ()00 ()
A( z) A(y) 2 erAeQ 2 AW 2i A
Since ©, is holomorphic on the upper half-plane, this equation must hold on all of it, not

just on the imaginary line.
This is not, in general, the correct weight n/2 transformation. However, it does give us

something useful. The congruence subgroup I';(4) is generated by (1 1) and (_1 4 1)

(this can be checked explicitly, and is left as an exercise to the reader), and therefore it
remains only to check that

Oa <1 _Z4Z> = (1 —42)"20,(2).

Applying the above relation to the left-hand side, we get

z 4— 2 I\"? 1
@A<1—4z>( % ) @A<1_E)‘

Since we know that ©, is invariant under z — z+ 1, we can replace 1 — é by —i and apply
the above relation again to get

O ( : > = (4 — Z1>n/2 (=2i2)"20,(2) = (1 — 42)"?O(2)

1—4z 21

as desired. Therefore we see that although ©, is not in general a modular form for SLy(Z),
it is one for I'y(4). O

In our case, n = 2 and A = Z? C R? is unimodular, and so ©, is modular of weight 1 for
['1(4). On the other hand, for any integers k, N > 1 and primitive odd Dirichlet character x
modulo N we have the Eisenstein series

B () =C Z X(y)

k
eaeriony ENFTY)

where C' is some explicit normalizing constant (the specific value of which we will compute
later).



1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

Proposition 1.2. The Eisenstein series Ej (%) is a modular form of weight k for I'1(N).

Proof. Let v = (i Z) €1 (N),sothata=d=1 (mod N) and c =0 (mod N). We have

az+b
Ek,x('yz) = B ( )

cz+d

X()
=0 )
az+b k
(w,y)€Z2—{(0,0)} (.’L’N cz+d + y)

— (cz+d)kC Z X(y)

k
emeriooy FN@z +0) +ylez +d)

x(y)
= (cz+d)*C
( | (z y)eﬁz{(o 0)} ((ra +yc/N)Nz+ xNb + yd)k

x(¥)
= (cz +d)fC X
(m',y%;{(om} ('Nz +y)*

= (cz + d)" Epy (2)

where ¢/ = za + ye/N and ¥ = xNb + yd; the mapping (z,y) — (2',y) is one-to-one
(and integral) due to the conditions on a,c,d, and since y is a character modulo N we
have x(y') = x(y) since d = 1 (mod N), which justifies the second-to-last equality. The
convergence and growth conditions are less obvious than in the previous case (in fact some
care is needed to make it converge), but we will not worry too much about these. O

In particular for N = 4 there is a unique odd Dirichlet character y4, defined by

1 mn=1 (mod4)
xa(n)=¢ =1 n=3 (mod 4)
0 n=0,2 (mod4)

Thus E} ,, is also a modular form of weight 1 for I'; (4); and it can be checked explicitly that
the space of such forms is 1-dimensional, so that ©, = aF,,, for some nonzero scalar «
since neither form is identically 0. In fact since F} ,, is normalized and ©, has constant term
72(0) = 1 since the only solution to 2% + y* = 0 is (0,0), we have @ = 1 and so O, = E ,,.

Proposition 1.3. The normalized Eisenstein series Ey ,(z) has Fourier expansion given by

By () =1+4> [ > xad) | ¢

n>1 dln

Proof. The nth Fourier coefficient is given by

—2mins

X 1
627mt/ e By, (s +it) ds = Ce*™ Z Xa(y) / -
; 0

. ds
(z,y)€72—{(0,0)} dxs + dixt +y

3



1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

for any ¢ > 0. The sum over y # 0 for x = 0 is trivial for n > 1, since then the integral is 0,
so we can assume = # 0; then the inner sum over y is given by

X4(y) /1 6727rins :Z Z_ X4(45L'a—|—b) /1 6727rins s
dr Jo s+it+4 =4 4z o stit+a+

where y = 4xa + b. Set s’ = s+ a. Since Y4 is a character modulo 4, our sum simplifies to

YEL

4|z|—-1 4lz|—-1

Y4 (b) /a+1 e—27rns’ , X4 (b) /oo e—27m'ns' .
——ds' = ds'.
2poRTCY R s

/ ; b
a€Z b=0 b=0 —0 8 F it + 4x

Setting §" = ¢’ + ﬁ, this is

1 4| -1 L 00 6—2m’ns”
- b eiﬂ-mb/x / dS”,
Az ; xa(b) it

and the integral can be evaluated explicitly (e.g. via the residue theorem) to be —2mie=2m"
which simplifies with multiplication by the leading factor €*™. Therefore in all the nth
Fourier coefficient is given by

4lz|—-1
. 1 Lrinb/x
—2CTi E o g xa(b)e2 .
z€Z—{0} b=0

We can rewrite the inner sum as

[y

r— r—1

(627rzn(4c+1)/m . 62mn(4c+3)/r) _ (627rmx . ezwznz) E e27rmc/x'

Q
Il
o

c=0

The sum is 0 unless z|n, in which case it is z, and the leading factor is "* — (—i)"*, which
is 0 if nx is even, 27 if it is 1 modulo 4, and —27 if it is 3 modulo 4. Therefore for n > 1 the
nth Fourier coefficient is

2Crm Z Xa(),

z|n
where the additional factor of 2 comes from taking both positive and negative x (the sign
change in x causes two sign changes in the sum, which cancel).

For n = 0, we can compute the Fourier coefficient by taking the limit as ¢ — 0, i.e.
2z — +i00. For z = 1t, by Proposition 1.2 we have

z it ) .
El)X (m) = ELX <m) = (]_ — 4Zt)E17X(lt),

. 1 it
Jim Er(it) = Jim 37 By (1 - 4it) ’

and so




2 REFORMULATING

Since - tends to —1 as t — oo, we look at the behavior of E ,,(z) = C > ()2 —{(0,0)} 4);42—%
near z = —}L, and we see that E;,, has a sum of simple poles coming from the diagonal

y = x. The sum of the residues is

eyl Loy uld Gy
x#0

2
x>1

where L(x4, s) is the L-function. Therefore

C 1
5L ) 1 = 20L(xa, D).

1—44t 4

) ) . 1 it ) 1
Jim Era(it) = lim 37— Fa (1 - 4it) =T

This particular L-function value is well-known to be I, and so we conclude that the Oth

4 bl
Fourier coefficient is
T
—C.
2

But C'is defined to be the scalar that makes this quantity 1, so C' = % and so the nth Fourier
coefficient is given by
4> xa(x)
z|n

as desired. O

Corollary 1.4 (Fermat). Let p be a prime. Then

1 (mod 4)
3 (mod 4)
2

r2(p) =

-~ O 0o

p
n
p

In particular p > 3 can be written as the sum of two squares if and only if it is congruent to
1 modulo 4.

Proof. By the equality ©) = E; ,, and Proposition 1.3, comparing Fourier coefficients gives

ra(n) =4y xa(d)

din

for each integer n > 1. For n = p prime, the only divisors are 1 and p, and so ry(p) =
4(xa(1) + xa(p)) = 4(1 + x4(p)); the result follows from the definition of yy4. O

2. REFORMULATING

Now we want to reinterpret the identity ©4 = E) , in more abstract language, in terms of a
certain representation of SLy(A), where A are the adeles. Let Vj, be an n-dimensional vector
space (free module of rank n) over the adeles A, equipped with a rational-valued unimodular
quadratic form @ = 3 (-,+), and S = §(V4) be the space of Schwartz functions on Vj (so in
our case above n = 2). Then we have an action of SLy(A) on S, defined as follows. Fix an
additive character 1) of A with real factor the exponential a — 2™ which is trivial on Q

5



2 REFORMULATING

and use it to define the Fourier transform f for f € S. Then we define an action of SLa(A)

on S by
((a a_l) 'f) (z) = x(a)|a|"*f(azx),

((1 C1L) .f) (z) = ¥(aQ(x)) f (),

and

for each f € S, z € Vj, and a € A where |a| = [], |al, is the adelic absolute value and

X : Q\A* — {£1} is the idele character associated to the extension Q(1/(—1)"2disc Q)/Q
by class field theory. By the Bruhat decomposition this suffices to define an action of all of
SLy(A) on S.

In fact, this comes from a more general action (Proposition 11.4.3 of [1]) of g = (i Z)
by

f(2) = x(@)la]™” /

ker c\Vy

P <% (az,bx) + (bz, cy) + % (cy, dy>> flax + cy) dy

where o = ¢ for ¢ nonzero and a for ¢ = 0, ker ¢ is defined with respect to the scaling action
of con V, so that it is 0 if ¢ # 0 and all of V} if ¢ = 0, and (-, ) is the pairing on Vj. This
version can be extended to higher symplectic groups beyond SLs = Sp(1). Observe that for
the first two cases above ¢ = 0 and so this is just evaluation

f(@) = x(a)la]"?y f(ax)
in the first case since b = 0 and
f(z) = ¢(aQ(z)) f(x)

in the second since a = 1; and finally if a = d = 0 and —b = ¢ = 1 this gives
U(= (@, ) f(y) dy = f(=),
Va

so this gives the same action as the above definition.
Now, write Vg C Vj for the Q-valued points. These form a discrete lattice in Vj, and for
any test function f € S we can define the “theta function”

> fla).

IEVQ

We are interested in the action of SLy(A) on S, and so for g € SLy(A) we define

0r(9) => (g- f)(x).

wGVQ

6



2 REFORMULATING

*
by scaling the argument of f by a rational, which does not change the sum over all x € Vg,
so really this gives an action of P(Q)\ SLy(A).

There is also an action of the orthogonal group O(Vy) = O(Q,A) on S by (inverted)
precomposition, and so for (g, h) € SLy(A) x O(Vy) we define

0r(9,h) =Y (g- N(h"x).

xEVQ

Note that since ¢ and y are trivial on Q the action of the parabolic P(Q) = (* *) } is

We want to remove the dependency on S, which we can do by making a canonical choice for
f: specifically we want something which is self-dual under the adelic Fourier transform. We
can do this by fixing a lattice A C Q" and completing at each prime p to get a lattice A, C Q)
and take ¢, to be the indicator function of A,, and at infinity we set ¢o. () = e 2" Then
we have a canonical function O4(g, h).

This depends on two variables, unlike our previous theta functions; but we can fix that.
We saw above that the action of g € P(Q) is trivial, and the action of h € O(Vg) permutes
the x € Vg and therefore does not affect the value of the sum. Therefore 0y is a function
on P(Q)\ SL2(A) x O(Vp)\ O(V4). In particular to eliminate the orthogonal action we can
integrate over the compact quotient O(Vg)\ O(Va) to get

os(0) = | 059, 1) dh
O(Vo)\ O(Va)

where dh is a Haar measure on O(Vj) normalized such that the stabilizer of A, i.e. the
product Stab(A) = [], Stab(A,) x O(Vg) of the stabilizers of A, over all p, has volume 1.
More generally for any automorphic form F for O(V}) we can consider the theta integral

0u(F)(g) = [ F(h)6,(g,h) dh.
O(Vo)\ O(Va)

How does this relate to our theta functions from the previous section? Well, O(Vg)\ O(V4)
decomposes as a finite union of Stab(A)-cosets, each corresponding to a homothety class aA
of lattices in the O(Vj)-orbit of A. For simplicity we consider the case where F' is the
indicator for one such coset aStab(A) (we could also take F' = 1 and take the sum over
finitely many a). Then

04(F)(9) = / ey P

[ bugan)dn
Stab(A)

B H/St b(Ay) Z(g - @)o(hy tay ) dh,.

IEV@

By strong approximation we can rescale g such that each component g, is in SLy(Z,) and
therefore preserves the indicator function ¢, of A,; and ¢,(h,'a,'z) = 1 if © € a,hyA, =

7



2 REFORMULATING

a,\, = (al),, since h € Stab(A), and 0 otherwise. Therefore the factor at p is just

/ dh,
Stab(Ap)

and so by our choice of measure and the fact that ¢., is O(Vg)-invariant we have

r€al

In particular the dependence on g is only via its component at infinity g, € SLa(R). Since
¢ 18 its own Fourier transform (up to simple terms), we can restrict attention to g, of the

form
o= ) )7 2)

for z = a+ i in the upper half-plane; note that
Oo(2) - i=a+ pi==z

and so this is a natural way of viewing a function on the upper half-plane as one on SLy(R).
The action of g..(2) is then given by

(goo(2) - D)oo () = thoo(@Q(x)) "/ 16~ ™V,
Since at infinity ¢ is given by the exponential this is just

6n/4e27riaQ(x)€—27rBQ(x) _ 6n/4e27riQ(x)z.

Therefore

O4(F)(9) = Op(F)(goo(2)) = B* Y MO0,

r€al

The sum is the theta series ©,5(z) from the previous section; the extra factor of g4
corresponds to the fact that the theta series is a modular form of weight n/2, and for

(CCL 2) = goo(2) we have (cz +d)"/2 = 374 so that ©,4(F) lifts O, via evaluation at 4. In

particular for our case n = 2 and A = Z? as in section 1 there is only one homothety class
of lattices in the orbit of A and so O4(1)(ge(2)) = VBOA(2).

This generalizes one side of the correspondence. We still have to deal with Eisenstein
series. For a fixed Schwartz function f, consider the function on SLy(A) given by

g~ (g-£)(0).

p= (“ aﬁ) - (1 af’) (a a_l) € P(A) C SLy(A),

(p- £)(0) = x(a)lal*?£(0),

8

For

we have



2 REFORMULATING

i.e. the unipotent radical acts trivially and the Levi subgroup acts by x(-)| - /2. Again the
action of P(Q) is trivial. Define

Ei(g)= > (vg-H0),

7E€P(Q)\ SL2(Q)

and to remove the dependence on a Schwartz function f choose our self-dual function f = ¢
as above.

cbl) + [c : d] gives a bijection P(Q)\ SLy(Q) — P'(Q), and in the same way

gives a bijection P(Z)\ SLy(Z) — PY(Z); since P}(Q) and P*(Z) can be naturally identified
it follows that P(Q)\ SL2(Q) and P(Z)\ SLy(Z) are in bijection.
For the component at infinity, ¢ (2) = e 2"9®) we have the decomposition

The map Z

SLy(R) = P(R) SO(2,R),

and for
=" L) erm
and '
o= (St et ) €5OC.B)
we have

We can compute that hg - ¢ = eion/ 2. It is not hard to see from the above formulas
and the fact that ¢ is its own Fourier transform that the action of hy on ¢ must give some
multiple of ¢, possibly rescaled by some factor a depending on 6. But in fact this factor
must be 1: for 6 any rational multiple of 27, by iterating the action of hy we must recover
the original ¢, which is not possible for ¢, unless a = 1 for those values of 6; and since the
action is continuous it follows that a = 1 for all §. Therefore it remains only to compute the
multiple of ¢, or equivalently the value of hy - ¢ at 0.

This is most easily done using the general formula introduced above: for sin@ # 0, the
integral is

Y(—sinf cos 0Q(z) — sin® 0 (z, y) + sin d cos 0Q(y))p(x cos O + ysin ) dy,
Va
which at z = 0 is just

W (sin b cos 0Q(y))o(y sin b) dy.

Va
(If sin® = 0, then hy = +1 and the claim is trivial.) Since all components are trivial away
from infinity, we can restrict to the component at infinity where this becomes

/ 62m’ sin @ cos 0Q(y))—27Q(y sin H) dy _ / 6—271-1'@*1'9 sin 0Q(y) dy

Since 2Q) = (-, -) is unimodular, standard methods give the integral as

1
(ie= sin §)"/2

9



2 REFORMULATING

The leading terms of the action contribute the remaining factors to give a total value of

(he - $)(0) = €2,

which by the previous remark concludes the computation.

Let z = a+ (i and go(2) be such that g.(z) - ¢ = z as above for the usual action
on the upper half-plane. We can use the decomposition SLy(R) = P(R)SO(2,R) to write
Y900 (2) = g'hy for some ¢’ € P(R) and hy € SO(2,R) as above; set 2/ = ¢’ - i. Then

(7900(2) - 600)(0) = (9o - Do) (0) = "2(g" - 60 )(0).

Since ¢’ € P(R) and ¢’ -i = 2z’ we can write ¢’ = g(2’), and from above we know that

(90() - do0) () = (B)" /120"

where we write 2z’ = o 4+ f'i. Since we want to evaluate at x = 0, the remaining thing is to
compute .

Let v = (CCL b). We have

d
(2) i az+b
() i=vy-2= )
79 v cz+d
On the other hand
icosf —sinf ie?
"hep i=q¢  — g =g =7
ghe-t=9 1sin @ + cos 6 g et gor=2

so we can compute the imaginary part of 2’ explicitly in terms of z to get

B

/
p= lcz+dJ?

Since

Q
|
Ne)
8
|
7N
=
»—l% Q\
N——

9

we can compute

ho =g 'Vgeo(z) =

(78 79
1 - /
v VBT \[S(ac+d)

and therefore

/
ew:cosﬁ—kismﬁzwﬁﬁ (e +d) —ic\/Bp" = cz+d)

Therefore

Bn/4 B 5n/4(62_’_d)n/2
lcz4d|™2 ez +d

N\ n/4
(1950(2) - 602)(0) = /2814 = (%) (5 +d)?

10



2 REFORMULATING

Since |cz +d| = \/(cz + d)(cz + d), this is just

Bn/ll
(cz +d)™/?

This gives the component at infinity of (7gs(2)-¢)(0). To get the remaining components,
observe that at each finite prime p since goo(2), is the identity this is just (7-¢)(0). Let N be
the conductor of the character y. Since y is defined by the extension Q(y/(—1)"/2disc Q)/Q,
by the definition of ¢, we have (v - ¢)(0) nonzero if and only if N|c, so that rescaling by

¢ preserves A. If this holds, the only effect of the action of ~ is to multiply ¢(0) = 1 by

x(d)B"
( +d n/2

to ensure that this holds. Since the sum over 7 can be taken over P(Z), it suffices to sum
over all coprime pairs (¢, d) (the difference between ged(c,d) = 1 and ged(cN,d) = 1 doesn’t
matter, since if ged(NV,d) > 1 we have x(d) = 0 in any case), where say c is restricted to be
nonnegative. Therefore we have

Xp(d). Thus the total contribution at v is » for N |c; from now on we replace ¢ by ¢N

iy x(d)
Ey(9oo(2)) = B o (cNz+d)"/?
ged(e,d)=1
c>0

Like the theta series, this differs from our previous definition by a factor of 5™/4; it also
differs in that the sum is now over only coprime pairs of integers. This is easily rectified:

B Ey(gse(2)) = Y %

ged(e,d)=1
c>0

x(d)
Z Z ch + d)"/?

(0 0) k| ged(c,d)

x(kd)
- Z uk) > (keNz + kd)"/?

k>1 (ed) £(0,0)
c>0

SED DL =L NS

E>1
S )
T 20L(x,n/2) MV

where C' is the normalizing constant; the factor of % comes from adding the ¢ < 0 terms
(note that the ¢ = 0 terms cancel since x(—d) = —x(d)). In our particular case where n = 2
and N = 4, we have L(x,1) = T and C = 7% so this gives

2) = VBEA(2)

Thus this is actually a cleaner expression as far as the normalization.

11



3 THE Eg LATTICE

Combining this with the equality above

95(1)(900(2)) = "0 (2),

we can view the result ©,(z) = Ej,(z) from section 1 as an instance of the Siegel-Weil
formula stating that

3. THE Eg LATTICE

Our next example is A equal to the FEg lattice, which is the unique rank 8 positive-definite
unimodular even lattice. One way to define it explicitly as a lattice in R® is as the set of
vectors whose entries are either all integers or all half integers and whose sum is an even
integer; an example basis is

—(20000000)
(—=1,1,0,0,0,0,0,0),
(o, 1,1,0,0,0,0,0),
= (0,0,—1,1,0,0,0,0),
(000 ~1,1,0,0,0),
e6 = (0,0,0,0,—1,1,0,0),
=(0,0,0,0,0,—1,1,0),

1
~(1,1,1,1,1,1,1,1).
2

Notice that this has quadratic form

1
Q(Il,...,l'8>=§(ZE%+---+$§)

given in this basis by

8@(1’161 —+ -4 1’868) = (4$1 — 21‘2 + $8)2 + (2:132 — 2!B3 + $8)2 i (QZEG — 2[[7 + 1’8)2
+ (21’7 + ZE8)2 + .Tg

As this is always even, we normalize it by again dividing by 2.
We can associate to A a theta function
— Z q?®

zEA

By Proposition 1.1, ©, is a modular form of weight 4 and level 4. Observe that the same
arguments as in section 2 show that ©, can be reinterpreted as 37204(F)(goo(2))-
On the other side of the Siegel-Weil formula, we have the (abstract) Eisenstein series

Ey(g)= > (19-9)(0).

1€P(Q)\ SL2(Q)

12
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Since A is positive-definite and 4|8, the discriminant of A is 1 and so the associated character
X is trivial; therefore

2 1 52 1
Bolg(2)) =8 3 (cz + d)* zg() Z (cz + d)*

ged(e,d)=1 d)ez?—-{(0,0)}
c>0

Thus from the Siegel-Weil formula we expect

Oa(z) = % >, :

T A
QC( ) (c,d)€Z2—{(0,0)} (CZ * d)

The following proposition tells us that the right-hand side is the normalized Eisenstein series,
so that as in section 1 we have an equality of a theta series and an Eisenstein series.

Proposition 3.1. We have

1 1
P =00 2y D

(c,d)eZ?—{(0,0)}

i.e. the normalizing constant of E4;1(z) is , and Ey1(z) has Fourier expansion

1
2¢(4)

Eia(z)=1+2403 [ > d* | ¢".

n>1 dln

Proof. 1t is clear that the right-hand side is a constant multiple of the left-hand side, so in
particular by Proposition 1.2 both sides are modular forms of weight 4 for I';(1) = SLy(Z).
As in the proof of Proposition 1.3, we compute the constant term by taking the limit as
qg — 0, ie. as z — +ioco. Letting z = it, we have

(1) = B (1) = Bty Bt

since Ey,; is a modular form of weight 4 for SLy(Z), so

. o AN : : L
Ji Fati) = i P () = P =Cliy 30 g
(Cvd)6227{(0v0)}

For ¢ > 0 this converges absolutely, and so we can pair the terms at (c,d) with those at
(—c,d); then taking t = 0 the summation over ¢ nonzero cancels and we are left with

CZ —20()

deZ— {0}

Since this is normalized to be 1, we conclude that C' = which proves the first claim.

2 (4)
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4 THE RANK 16 AND 24 CASES

For n > 0, the nth Fourier coefficient is given by

1 2mnt —27rins
27nt —2mins . €
E t)ds = d
e /Oe wa(s+it)ds Ry E / (it d) s

(c,d)€Z2—{(0,0)}

for any ¢ > 0. We can proceed just as in the proof of Proposition 1.3, adjusting for level and
weight, to get

|C| 1 —2mins’’

27rnt 2minb/c € ds"
T Y ay e [ G

cez—{0} € b=0

The integral is
8rin?
3

and the inner sum is 0 unless ¢ divides n, in which case it is |¢|, so in all (doubling and
restricting to ¢ > 0, since ¢ < 0 gives the same term) this is

8min3 1 8t ny3
3¢(4) Zm: A3 3((4) % (E) '

e—27‘rnt

Since ((4) = = and replacing ¢ by = only permutes the divisors, this is

90
240 ¢,

cln
which gives the desired formula. O]

Since the space of modular forms of weight 4 and level I';(4) has dimension 3 we can
now conclude that ©, = Ej,; by computing the first three Fourier coefficients of ©,, i.e. the
number of vectors in A with length 0 (one), length 1 (240 - recall that we’ve normalized by
dividing @ by 2), and length 2 (2160), agreeing with the first three coefficients of Fj ;.

Notice that it follows that ©, is in fact a modular form of weight 4 for the full modular
group SLo(Z), rather than just for I';(4) as from Proposition 1.1. This can also be checked
directly. Since the space of modular forms of weight 4 for SLy(Z) is one-dimensional, we
can conclude immediately that ©, = E,; immediately from the normalization, without
computing further Fourier coefficients.

4. THE RANK 16 AND 24 CASES

There are two positive-definite unimodular even lattices in rank 16: one is just two copies

of the Fg lattice, and the other is given by generalizing its definition in the obvious way to

rank 16. We are concerned with the latter, which we will call A as usual, or the F4 lattice.
As in the case n = 8, our Eisenstein series is

B 1

(c,d)€z?—{(0,0)}
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and by the same method as in the proof of Proposition 3.1 (replacing everywhere 4 = % by
8 = 18) we see that this is equal to 3*Es;(2), and that we have a Fourier expansion

1 1678
Bsa(z) =1+ —- d") ¢" =144 d" | q".
sa(2) =1+ C(8) 315 Z q" + 802 Z q

n>1 \ dn n>1 \ dln

This is a modular form of weight 8 for the full modular group SLy(Z); the space of such
modular forms is one-dimensional, and again O, is also such a modular form since 8|16.
Since it is also normalized we conclude that again ©, = Fg ;.

In fact we can generalize this: for any positive integer k, the corresponding integral is

/oo e—2mins” g — _4]€C(2/€)
(

S pr—
o (7 it Ba

where By, is the Bernoulli number, and so

k((2k) L
Ezk,l(Z)Zl—Cék) 4C2 Z Zd2k1 qnzl_g_zkz Zd2k—1 7"

n>1 dln n>1 dln

(Note that since By is always negative for even k, the leading sign will be positive for our
cases of interest 4|k.)

However, it is not in general true that ©, = Ey;, for A the generalization of the Eg and
F1g lattices to rank 4k. One easy way to see this is that the Fourier coefficients of ©, must
all be integers, but e.g. for k = 6 we have

65520

E1271(z) =1+ 691 Zdll qn.
n>1

This is due to the failure of the equation ©4(1) = %0,, which is due to the presence of
additional homothety classes in the orbit of A, so that we need to average over all of them,
weighted by the size of their automorphism groups. In other words we have

1
2o Fmw ON
1
ZA’ Aut A/

where the sum is over all lattices in the genus of A, i.e. all unimodular positive-definite even
lattices of rank 24. There are 24 of these, and since the space of modular forms of weight 12
and level 1 is 2-dimensional it suffices to compute the first coefficient of each theta series, as
well as the (very large) automorphism groups, to verify the claim.

O,(1) =
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