

## Practice midterm 4

Complex analysis, lecture 4

December 1, 2025

As usual, be sure to include your method, and remember to write your name.

**Problem 1.** Using the argument principle around a circle of sufficiently large radius  $R$ , show that  $p(z) = z^5 - z + 3$  has five zeros (counting multiplicity), as predicted by the fundamental theorem of algebra.

*The above problem is directed towards Objective 11 (the argument principle).*

**Problem 2.** Use Rouché's theorem to show that  $p(z) = z^5 - z + 3$  has *no* zeros with  $|z| < 1$ .

*The above problem is directed towards Objective 11 (the argument principle).*

**Problem 3.** Let  $f : \mathbb{D} \rightarrow \mathbb{D}$  be an analytic function, where  $\mathbb{D} = \{z : |z| < 1\}$  is the unit disk. Suppose that  $f(1/2) = f'(1/2) = -1/2$ . Show that  $f$  cannot be a conformal map.

*The above problem is directed towards Objective 12 (the Schwarz lemma).*

**Problem 4.** Let  $f : \mathbb{C} \rightarrow \mathbb{C}$  be an entire function whose restriction to  $\mathbb{D} = \{z : |z| < 1\}$  has image in  $\mathbb{D}$  and gives a conformal map  $\mathbb{D} \rightarrow \mathbb{D}$ . Show that  $f$  must be of the form  $f(z) = e^{i\theta}z$  for some real number  $\theta$ .

*The above problem is directed towards Objective 12 (the Schwarz lemma).*

**Problem 5.** Solve the Dirichlet problem on the disk  $D = \{z : |z| < 2\}$  of radius 2 centered at the origin: if  $h : \partial D \rightarrow \mathbb{C}$  is a continuous function, give an integral formula for the unique harmonic function  $\tilde{h} : D \rightarrow \mathbb{C}$  with boundary values  $h$ .

*The above problem is directed towards Objective 13 (the Poisson integral formula and harmonic functions).*

**Problem 6.** Let  $h(z) = e^{|z|^2}$ , as a function  $\mathbb{C} \rightarrow \mathbb{C}$ . Show that  $h$  does not satisfy the mean value property.

*The above problem is directed towards Objective 13 (the Poisson integral formula and harmonic functions).*

**Problem 7.** Let  $\Omega_1 = \{z \neq 0 : \frac{\pi}{3} < \arg z < \pi\}$  and  $\Omega_2 = \{z : |z| < \pi\}$ . Find a conformal map  $\Omega_1 \rightarrow \Omega_2$ .

*The above problem is directed towards Objective 14 (the Riemann mapping theorem).*

**Problem 8.** Does there exist a simple connected domain  $\Omega \subseteq \mathbb{C}$  with a conformal map  $\Omega \rightarrow \mathbb{C}$  and a conformal map  $\Omega \rightarrow \mathbb{D}$ , where  $\mathbb{D} = \{z : |z| < 1\}$  is the unit disk? Give an example if so, or prove that it is impossible if not.

*The above problem is directed towards Objective 14 (the Riemann mapping theorem).*