Lecture 8: line integrals

Complex analysis, lecture 4
September 22, 2025

Our goal today and Wednesday is to briefly review line integrals from multivariable
calculus and some properties we can derive using them, in anticipation of building up the
complex analogues next week. In theory, everything this week is real, but we will often sneak
in complex numbers, or hint what the analogues will look like.

1. PATHS AND PATH INTEGRALS

We’ve seen the notion of paths or curves before in our discussion of conformal functions. We
generalize it slightly here: a path, or curve, in a domain D is a map 7 : [a,b] — D, for fixed
real numbers a < b (previously always 0 and 1). We call this a path from ~y(a) to v(b). We
often want to assume that our path is smooth, i.e. infinitely differentiable; very often it will
suffice to assume it is continuously differentiable. We’ll often refer to the image of v as the
same thing as ~.

We say a path is simple if it never intersects itself, or more formally if v is injective, and
as closed if y(a) = v(b); we say it is a simple closed path if y(a) = v(b) but y(s) # ~(t) for
any s # t other than s = a, t = b (or vice versa). So a simple closed path can be thought of
as a loop in D.

If ¢ : [e,d] — [a,b] is a strictly increasing continuous function, then vy o ¢ : [¢,d] — D
is again a path in D, with the same image. We call this a reparametrization of v, and
think of it as essentially equivalent, or a different way of tracing out the same path. Up to
potentially reparametrizing, we can concatenate one path with another: if ~; : [a,b] — D
and v, : [¢,d] — D with v,(b) = 72(c), choosing ¢(t) = t—b+c we get y20¢ : [b,d+b—c|] — D
with starting point the same as the ending point of 1, so we can combine them to get a
“piecewise smooth” path v : [a,d + b —c] — D.

Suppose ~ is a path in D C R? from A to B, and P, : R? — C are complex-valued
functions on D. For points A = (xg,y0), (1,91), - -, (Tn,yn) = B on v, say (z;,v;) = v(t;)
with a =ty < t; < --- <t, = b, we can consider the Riemann sum

As n — oo such that the distances between each point tend to zero (for example if ¢; =
a+ £(b—a) and v is continuous), if this has a limit we call it the integral of Pdx + Q dy
along v, denoted

/ Pdx + Qdy.

o

If we write v(t) = (x(t),y(t)) and assume it is continuously differentiable, with x(t;) = z;,
y(t;) = y;, by the mean value theorem we can find some T; such that x;,1 —x; = 2/(T;)(ti1 —



t;) and similarly for y(¢), so we can rewrite the sum above as
> Pla(t), y(ta)2 (L)t — i) + Qa(ts), y(t)y' (L) (b — ),

so the integral can be rewritten as

b b
/ P(x(t),y(t))2'(t) dt + / Q(x(t), y(1)y/ () dt.

This is now something that can be explicitly evaluated using ordinary one-variable calculus.

For the first formula above, we only use the points (x;,7;) on the image of the curve
v, so in particular it is independent of the parametrization, even though the one-variable
formulation above appears to depend on this choice. If we reverse the orientation, i.e. go
from b to a (or B to A) instead of the other way around, we should multiply everything by
—1.

Consider for example P(z,y) = zy, Q(x,y) = 0, and ~ the quarter circle in the first
quadrant, v(t) = (cost,sint), from ¢t = 0 to ¢ = 5. Then we have

Axy dr = /07r/2 cos(t) sin(t) - (—sin(t)) dt = — /Oﬂ/2 cos(t) sin(t)? dt = — /01 u?du = —%

where u = sint. Indeed, as t increases, x decreases, so it makes sense that dz is negative
while xy is positive so the integral is negative.

Another useful tool for evaluating path integrals is Green’s theorem. If D is a domain
with boundary 9D consisting of a smooth simple closed curve, or possible a disjoint union
of piecewise smooth closed curves, and P, () are continuously differentiable functions on

D UOD, then
/ Pd:):+Qdy:// (a—Q—a—P) dx dy.
8D p \ Oz 0y

This is useful even for non-closed curves. For example, for v the quarter-circle as above,
write ¢, for the straight line segment connecting (0,0) and (1,0), i.e. £1(t) = (¢,0) from ¢t =0
to t =1, and ¢5 for the line segment connecting (0,1) and (0,0), i.e. 5(t) = (0,1 —t), again
from 0 to 1. Then concatenating ~, ¢1, and {5 gives a simple closed curve, the boundary of
the quarter-disk D. Now, for P(z,y) = zy and Q(z,y) = 0, note that P and @ both vanish

on /1 and /5, so
/ de—i—@dy:/a:yd:c.
oD v



By Green’s theorem, this is the same thing as

0Q (’9P> //
— — — | dzdy = — xdxd
//D<a$ dy Y D Y
1 /2
—/ r/ rcos 6 df dr
0 0
w/2 1
:—/ cosGdG/ r?dr
0 0

agreeing with the computation above.

An important question is when a path integral is independent of the path chosen, so long
as the endpoints are the same. It’s not immediately obvious that this would ever be true,
but is strongly suggested by the analogy with the fundamental theorem of calculus: recall
that if f(z) is the derivative of some function F(z) on [a, b], then

/ f(z)dz = F(b) — F(a).

What about the multivariable situation?
If h(z,y) is continuously differentiable, write

on  oh
dah =+ My
2z T gy

We say Pdx + @ dy is exact if it is equal to dh for some function h. In this case, a similar
result holds:

/dH /—d +—d /ab (%:p’(t)gz ()) it — /bjth( (1), y(8)) dy = h(B)—h(A).

Thus the path integral of an exact differential is independent of the path. In fact the converse
is true as well, though we won’t prove this.

However, not every differential is exact. I claim that our example of zy dx already gives
an example. To see this, it’s useful to give a criterion we can check. Suppose P dx + @) dy is

exact, and so equal to some dh, so P = B—Z and ) = ‘% . Then

or _ 90h_ 90h_0Q
oy Oyoxr Oxdy Ox
More generally, we say that P dx + Q) dy is closed if 38_5 aQ
exact differential is closed. But zydz is not closed: P(z,y) = zy while Q(z,y) = 0, so

% = z while g—Q = 0, so zy dy therefore cannot be exact.
y T

so the above shows that every



Note that the differential being closed is the same as the integrand % — g—g in Green’s
theorem being zero, so it follows that the integral of a closed differential along the boundary
of some domain D satisfying the conditions of the theorem is zero.

For certain domains, though, it is true that every closed differential is actually exact. This
is actually a characterizing property of simply connected domains; let’s restrict ourselves to
star-shaped domains. We can state the result as follows: if D is a star-shaped domain and
Pdx + Qdy is a closed differential on D, where P and () are continuously differentiable
functions, then P dx + () dy is exact on D.

To prove this, we need to construct h. Suppose D is star-shaped with respect to a point

A, and for B € D set
f(B) :/de—i-Qdy
8!

where + is the straight line segment from A to B, say v(t) = (1 — t)A + tB. We claim that
dh = Pdx + Qdy.

If B = (z0,%0), consider C' = (x¢+¢,yo) for € small enough that the triangle with vertices
A, B,C is contained in D. Since Pdx + @ dy is closed, the integral along the boundary of
the triangle is zero, so

B c A
/ Pdm+Qdy+/ de+Qdy+/ Pdz+ Qdy =0,
A B c

h(C) — h(B) = h(zo + € y) — h(zo, yo)

c B
/ Pdm+Qdy—/ Pdz+ Qdy
A

A

C

/ Pdz+ Qdy
To+e€

/ P(t, yo) dt.

zo

s}

Differentiating, we get
oh
%(Cﬂoyyo) = P(z0,%0)-

The same argument gives
oh
a—y(fﬂmyo) = Q(Z0, %),

so dh = Pdx + Q dy, i.e. Pdx + Q dy is exact.

Finally, we want to consider the case where Pdx + () dy is closed, but not necessarily
exact, on a domain D, so it is not in general independent of the path. However, if we have
two paths 7p, 71 which are “very close” to each other in a certain sense and have the same
endpoints, then the integrals along these paths do agree. More precisely, suppose that for



0 < s <1 we have paths v, in D such that at s = 0 we recover 75 and at s = 1 we recover
7, and 7 : [0,1] x [a,b] — D, sending (s,t) to vs(¢), is a continuous map. Then

/Pdw—l—@dy:/de—l—Qdy.
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We won’t prove this; the proof is mostly straightforward but tedious, and amounts to
checking that shifting the path by individual small squares doesn’t change the result, and
that the overall change from vy to v; can be written as a composite of such changes.

A similar argument works for closed paths, in which case we can also allow the starting
point to vary. In particular, if a path can be deformed down to the “trivial loop” ~(t) = A,
independent of ¢, then the integral over it must be zero.
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