

## Lecture 5: the Cauchy–Riemann equations

Complex analysis, lecture 4  
September 10, 2025

Last time, we introduced analytic (or holomorphic) functions on a domain as those whose complex derivative is well-defined and continuous at every point in the domain. Today, we will find an explicit way to check, given a complex-valued function, if it is analytic or not.

We work in Cartesian coordinates both on the input and on the output: write  $z = x + iy$ , and  $f(z) = u + iv$ . Thinking of  $f$  as depending on the two real numbers  $x$  and  $y$ , we can think of each of  $u$  and  $v$  as real-valued functions of  $x$  and  $y$ :

$$f(x + iy) = u(x, y) + iv(x, y).$$

Let's study the derivative in this setting, using the formula

$$f'(z) = \lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h}.$$

Here the limit is in the complex sense, so we must be able to take  $h$  approach zero from any direction. We will study the cases when  $h$  is approaching along the real or imaginary line.

Suppose  $h$  is real. Then

$$\begin{aligned} \frac{f(z + h) - f(z)}{h} &= \frac{f(x + h + iy) - f(x + iy)}{h} \\ &= \frac{u(x + h, y) + iv(x + h, y) - u(x, y) - iv(x, y)}{h} \\ &= \frac{u(x + h, y) - u(x, y)}{h} + \frac{v(x + h, y) - v(x, y)}{h}i. \end{aligned}$$

As  $h \rightarrow 0$  along the real line, the limit—if it exists—is given by

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}i.$$

Let's now take the limit along the imaginary axis; for clarity, we'll still take  $h$  to be a real number, and change  $z$  by  $ih$ . We have

$$\begin{aligned} \frac{f(z + ih) - f(z)}{ih} &= \frac{f(x + i(y + h)) - f(x + iy)}{ih} \\ &= \frac{u(x, y + h) + iv(x, y + h) - u(x, y) - iv(x, y)}{ih} \\ &= -\frac{u(x, y + h) - u(x, y)}{h}i + \frac{v(x, y + h) - v(x, y)}{h}. \end{aligned}$$

Taking the limit as  $h \rightarrow 0$ , the right-hand side becomes

$$-\frac{\partial u}{\partial y}i + \frac{\partial v}{\partial y}.$$

Now, if  $f$  is going to be differentiable at  $z$ , these limits must both exist and must both agree. So if  $f$  is differentiable at  $z$ , both first-order partial derivatives of  $u$  and  $v$  must exist; and, equating the expressions above and taking real and imaginary parts, we must have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

These are called the Cauchy–Riemann equations.

**Theorem.** *Let  $f = u+iv$  be a complex-valued function on a domain  $D$ . Then  $f$  is analytic on  $D$  if and only if  $u$  and  $v$  have first-order partial derivatives defined and continuous everywhere on  $D$  which satisfy the Cauchy–Riemann equations.*

We have already essentially shown one direction of this result: if  $f$  is differentiable at  $z$ , then it satisfies the Cauchy–Riemann equations at  $z$ . (To replace “differentiable” with “analytic,” we only need to add the requirement that the partial derivatives be continuous.) What remains is to prove the converse: if  $u$  and  $v$  have partial derivatives satisfying the Cauchy–Riemann equations, then  $f$  is continuous.

We show this using first-order approximation: if  $\frac{\partial u}{\partial x}$  and  $\frac{\partial u}{\partial y}$  are defined near  $(x, y)$ , then for small real numbers  $j, k$  we have

$$u(x+j, y+k) = u(x, y) + \frac{\partial u}{\partial x} \cdot j + \frac{\partial u}{\partial y} \cdot k + R(j, k)$$

where  $R$  is some function such that  $\lim_{j \rightarrow 0} \lim_{k \rightarrow 0} \frac{R(j, k)}{|(j, k)|} = 0$ . The same formula holds for  $v$  in place of  $u$ ; write  $S(j, k)$  for the remainder term in place of  $R$ . Then we can compute

$$\begin{aligned} \frac{f(z+h) - f(z)}{h} &= \frac{f(x+j+ik) - f(x, y)}{j+ik} \\ &= \frac{u(x+j, y+k) + iv(x+j, y+k) - u(x, y) - iv(x, y)}{j+ik} \\ &= \frac{\frac{\partial u}{\partial x} \cdot j + \frac{\partial u}{\partial y} \cdot k + R(j, k) + i \left( \frac{\partial v}{\partial x} \cdot j + \frac{\partial v}{\partial y} \cdot k + S(j, k) \right)}{j+ik}. \end{aligned}$$

If we assume that the Cauchy–Riemann equations hold, so that  $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$  and  $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ , we can rewrite this as

$$\frac{\frac{\partial u}{\partial x}(j+ik) + \frac{\partial u}{\partial y}(k-ij) + R(j, k) + iS(j, k)}{j+ik} = \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}i + \frac{R(j, k) + iS(j, k)}{j+ik}.$$

Taking the limit as  $j, k \rightarrow 0$ , the third term we know tends to zero in absolute value, so we can drop it, and we’re left with the first two terms which by assumption are well-defined and continuous on  $D$ . Hence  $f$  is in fact analytic on  $D$  under these assumptions.

We check some examples. For  $f(z) = z = x+iy$ , we have  $u(x, y) = x$  and  $v(x, y) = y$ , so  $\frac{\partial u}{\partial x} = 1$ ,  $\frac{\partial u}{\partial y} = 0$ ,  $\frac{\partial v}{\partial x} = 0$ , and  $\frac{\partial v}{\partial y} = 1$ , so the equations hold by inspection.

A slightly more complicated example is  $f(z) = e^z$ . Writing  $z = x + iy$ , this is  $e^x \cos y + ie^x \sin y$  by Euler's formula, so  $u(x, y) = e^x \cos y$  and  $v(x, y) = e^x \sin y$ . We find

$$\frac{\partial u}{\partial x} = e^x \cos y, \quad \frac{\partial u}{\partial y} = -e^x \sin y, \quad \frac{\partial v}{\partial x} = e^x \sin y, \quad \frac{\partial v}{\partial y} = e^x \cos y,$$

so again the equations hold.

Since the equations are linear, linear combinations of analytic functions are analytic (which we already know by rules of differentiation). A more important property is the following, reflecting a basic principle of integral calculus.

**Proposition.** *If  $f(z)$  is analytic on a domain  $D$  and  $f'(z) = 0$  for all  $z \in D$ , then  $f$  is constant on  $D$ .*

Indeed, if  $f$  is analytic then it satisfies the Cauchy–Riemann equations, and we computed above that then

$$f'(z) = \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}i = 0,$$

so taking real and imaginary parts we see that  $u$  has both partial derivatives everywhere zero, hence  $u$  is constant. By the Cauchy–Riemann equations, both partial derivatives of  $v$  are also zero, so  $v$  is also constant, hence  $f$  is constant.

One can also check other analogous properties. For example, if  $f$  is real-valued and analytic on a domain  $D$ , then it must be constant. This might be surprising, since we're used to restricting to the real line (or a subset of it) to recover a real-valued function; but note that no (nonempty) subset of the real line is a domain! Indeed, using the Cauchy–Riemann equations, if  $v = 0$  then its partial derivatives both vanish, so so do those of  $u$ , so  $u$  must be constant, so  $f = u + 0$  is constant. This immediately tells us that for example  $f(z) = |z|^2 = x^2 + y^2$  is not an analytic function; this can be verified from the Cauchy–Riemann equation.

Note again that from the apparently weak condition that a function be complex-differentiable, we've deduced that it must in fact satisfy a pair of differential equations, a much stronger-looking condition! This relates back to our slogan from last time: the existence (and conditions on the behavior) of complex limits is a much stronger assumption than it looks.

In everything above, we used Cartesian coordinates. However, we could just as well have used polar coordinates: writing  $z = re^{i\theta}$  and  $f(z) = u + iv$  with  $u$  and  $v$  viewed as functions of  $r$  and  $\theta$ , by varying either  $r$  or  $\theta$ , one can derive the polar form of the Cauchy–Riemann equations

$$\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta} \quad \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}.$$

A slightly different application of the Cauchy–Riemann equations is to showing that inverse functions of analytic functions are analytic, at least after restricting to some neighborhood of a given point (if nothing else to ensure that they are single-valued). Viewing  $D \subset \mathbb{C} \simeq \mathbb{R}^2$  and  $f : D \rightarrow \mathbb{C} \simeq \mathbb{R}^2$  as a function from a region in the plane to the plane,

from multivariable calculus the invertibility of  $f$  is determined by the Jacobian matrix

$$J_f = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}.$$

In particular,  $f$  is invertible when  $J_f$  is, equivalently when  $\det J_f$  is nonzero. Using the Cauchy–Riemann equations to substitute for the partial derivatives in  $y$ , we can write the determinant as

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 = \left|\frac{\partial f}{\partial x}\right|^2.$$

Since  $f$  is analytic, the partial derivative with respect to  $x$  is just  $f'$ , so this determinant is just  $|f'(z)|^2$ .

Therefore if  $f'(z) \neq 0$ , then  $f$  is locally invertible at  $z$ . The standard formula from calculus tells us that the derivative of  $f^{-1}$  at  $f(z)$  is  $\frac{1}{f'(z)}$ , so since  $f'$  is nonzero and continuous at  $z$  by analyticity, it follows that  $f^{-1}$  is also analytic at  $z$ .

For example, the principal branch  $\text{Log } z$  of the logarithm is analytic away from the branch cut at  $\theta = \pi$  and has derivative at  $z = e^w$  given by  $\frac{1}{e^w} = \frac{1}{z}$ . Since any other branch of the logarithm differs from  $\text{Log } z$  by a constant, their derivatives are the same, so any branch of the logarithm has derivative  $\frac{1}{z}$ , which is well-defined and continuous away from  $z = 0$ .