Lecture 25: conformal maps to the disk
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We have mentioned before the philosophy that we consider domains with a conformal
map between them to be equivalent. Our goal this week is to work up to the statement of
the Riemann mapping theorem, which gives a full classification of all of the simply connected
domains in C (or the Riemann sphere C U {oco}) up to conformal equivalence: every such
domain has a conformal map to either C U {oo} (if we're working in the Riemann sphere),
C itself, or the unit disk D.

We will not prove this theorem, nor formally state it quite yet, but we’ll use it as mo-
tivation: if this theorem is true, then any domain in C other than C itself has a conformal
map to the unit disk. Indeed, this follows from the following theorem:

Theorem (Picard’s theorem). If f : C — C is an analytic function, its image is either a
single point {c}, the entire complex plane C, or C — {c} for some ¢ € C.

Proof sketch. Let f be an analytic function C — C such that there exist ¢; # ¢3 not in the
image of f. For any fixed ¢, ¢y, there is a holomorphic surjection g : D — C\ {¢1, c2}, whose

construction is somewhat complicated and which we omit. Then one can show that f = go f
for some map f C — D, and then f : C — D is a bounded entire function, hence constant.
Therefore either f is constant or its image misses at most one point. O

With Picard’s theorem in hand, we can note that if  C C is not all of C, it is missing
at least one point. (We will try to use €2 for an arbitrary domain for today in place of D, to
avoid confusion with D.) If Q = C\ {¢} for some ¢ € C, it is not simply connected, so we
can assume ) is missing at least two points. Then there is no non-constant analytic map
C — Q, by Picard’s theorem, so C and €2 cannot be conformally equivalent. Therefore by
the Riemann mapping theorem, €2 is conformally equivalent to the unit disk .

Our goal today is to try to justify this concretely: for various different kinds of domains
2, we would like to find conformal maps €2 — D.

We have already seen that the upper half-plane H admits a conformal map H — D,
given by z — Z=. Thus H is conformally equivalent to D, so to show that a domain 2 has a
conformal map to D, we can equally well show that it has a conformal map to H. This will
sometimes be useful.

We have been vague about the term “simply connected,” but let’s define it for our
purposes as a domain €2 such that for any simple closed curve v in €2, v can be continuously
deformed to a point. This includes for example all star-shaped domains, but does not include
annuli. Every domain listed below will be simply connected.

The first kind of domain we want to study is a generalization of the upper half-plane:
a sector is a domain of the form Q = {z # 0 : a < argz < (} for fixed real « < . For
example, taking o = 0 and # = 7 gives the upper half-plane.

By rotating by —a, we can always assume a = 0, so we may as well assume our sector
is of the form {0 < argz < a} for some o < 27. The principle branch of z ++ z4/® sends

1



to {0 < argz < A}, so in particular z — 2™/ sends €2 to the upper half-plane. Away from
z = 0, it is conformal and bijective, so this gives a conformal mapping 2 — H, which we
can compose with the standard map H — D to get a map €2 — ). Therefore any sector is
conformally equivalent to D.

Our next type of domain is a strip, which can be geometrically thought of as the region
between two parallel lines in C. By rotating, we can change any strip to a horizontal strip,
which is of the form {a < (2) < b} for some fixed real numbers a < b.

The map z — e* then sends this strip to {e? < argz < €’}, a sector. Since we know
we can map any sector conformally onto the unit disk and z — e* is conformal, this gives a
conformal map 2 — D as desired.

Let’s try to work out a concrete example. Let D be the vertical strip {—1 < Re(z) < 1}.
To turn it into a horizontal strip, we multiply by ¢, which sends D to {—1 < Im(z) < 1}.
(More explicitly, if z = z + iy with —1 < 2 < 1, then iz = —y + iz with imaginary part
satisfying the same bounds.) We can then exponentiate to get ¢ € {—1 < argz < 1}, a
sector. Rotating by an angle of 1, we get e € {0 < argz < 2}, and taking the power of
7/2 we get e™#/2T7/2 ¢ 1) < arg z < 7}, the upper half-plane. Finally composing with the

standard map we get
em’z/2+m’/2 — efriz/Q -1

zZ= emiz/2+mi/2 Ry - emiz/2 + 1

This map sends 0 +— 0, and in the limits +ico — —1, and —ioc0 > 1.

Note that in general these maps D — I are not unique. Indeed, for any such map f, we
can compose with a conformal self-map of D to get a new map D — ). However, if we fix
some conformal map f: D — D and g : D — D is another such map, then fog ' :D — D
is a conformal self-map of D, which we classified last time; such maps are parametrized by
a €D and A = e € 9D, so the space of conformal maps D — D is also parametrized by
this data.

The final type of domain we want to consider today is a lunar domain. Although this
is not something we see often, it is actually a natural generalization of a strip: we’'ve seen
before that a straight line in C can be thought of as a special kind of circle on CU{o0}, with
the other circles corresponding to circles in C, i.e. “a straight line is a circle with infinite
radius.” A strip was the area bounded between two parallel straight lines in C; a lunar
domain D is a domain bounded between two curves in C which is each either a straight line
or the arc of a circle, which intersect at two (distinct) points zy and 2.

If we were to allow zg and z; to go to infinity in opposite directions, we could think of
the resulting lunar domain as a strip, with both arcs given by parallel straight lines. Since
we don’t need to include 2y and z; in D, only in the bounds, this makes more sense than one
might expect; formally we can justify it by showing that there is a conformal map between
a lunar domain and a strip, which by our results above boils down to showing there is a
conformal map from a lunar domain to ID.

Another version of this manipulation is to take zp = 0 and z; — oo (in some direction).
In this case we have two rays meeting at 0, which we also think of as meeting at infinity;
this gives a sector! Let’s actually specify a conformal map from a lunar domain to a sector.



If f:CU{oo} - CU{o0} is a conformal map—i.e. a meromorphic function f : C — C
with nonvanishing derivative, exactly one pole, and whose image misses a single value ¢ such
that f(oco) = lim, o f(2) = ¢, or an entire function f : C — C with f(oc0) = oo (a pole at
infinity, i.e. in the case ¢ = 00), in both cases with nonvanishing derivative—sending zg — 0
and z; — 0o, then f will send D to this sector. Concretely, such a map f is given by

zZ — 20

f(z) =

9
zZ— 2

a fractional linear transformation. Since we know sectors map conformally to ID, this shows
that lunar domains do as well.

Let’s give a concrete example of this. Let 'y and I'_ be circles centered at +i respectively
with radii v/2.

D
One can compute that the intersection of the circles is at +1, so zg = —1, z; = 1, and so
per the above we should first study the image of D under f(z) = % Since both circles

pass through +1 and f sends these points to 0 and oo, f sends both circles to straight lines
passing through oco. Note that I', contains the point i(1 4 v/2), which is taken by f to
\%(1 —4) = e ™4 50 this is the line through the origin of slope —1. Similarly, I';. contains
—i(1 + +/2), which is taken by f to e™/*, so I'_ is taken to the line of slope 1 through the
origin.

Finally, f(i) = —i, so the image of D is the sector {2 < argz < I}



