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We have mentioned before the philosophy that we consider domains with a conformal
map between them to be equivalent. Our goal this week is to work up to the statement of
the Riemann mapping theorem, which gives a full classification of all of the simply connected
domains in C (or the Riemann sphere C ∪ {∞}) up to conformal equivalence: every such
domain has a conformal map to either C ∪ {∞} (if we’re working in the Riemann sphere),
C itself, or the unit disk D.

We will not prove this theorem, nor formally state it quite yet, but we’ll use it as mo-
tivation: if this theorem is true, then any domain in C other than C itself has a conformal
map to the unit disk. Indeed, this follows from the following theorem:

Theorem (Picard’s theorem). If f : C → C is an analytic function, its image is either a
single point {c}, the entire complex plane C, or C− {c} for some c ∈ C.

Proof sketch. Let f be an analytic function C → C such that there exist c1 ̸= c2 not in the
image of f . For any fixed c1, c2, there is a holomorphic surjection g : D → C\{c1, c2}, whose
construction is somewhat complicated and which we omit. Then one can show that f = g◦ f̃
for some map f̃ : C → D, and then f̃ : C → D is a bounded entire function, hence constant.
Therefore either f is constant or its image misses at most one point.

With Picard’s theorem in hand, we can note that if Ω ⊂ C is not all of C, it is missing
at least one point. (We will try to use Ω for an arbitrary domain for today in place of D, to
avoid confusion with D.) If Ω = C \ {c} for some c ∈ C, it is not simply connected, so we
can assume Ω is missing at least two points. Then there is no non-constant analytic map
C → Ω, by Picard’s theorem, so C and Ω cannot be conformally equivalent. Therefore by
the Riemann mapping theorem, Ω is conformally equivalent to the unit disk D.

Our goal today is to try to justify this concretely: for various different kinds of domains
Ω, we would like to find conformal maps Ω → D.

We have already seen that the upper half-plane H admits a conformal map H → D,
given by z 7→ z−i

z+i
. Thus H is conformally equivalent to D, so to show that a domain Ω has a

conformal map to D, we can equally well show that it has a conformal map to H. This will
sometimes be useful.

We have been vague about the term “simply connected,” but let’s define it for our
purposes as a domain Ω such that for any simple closed curve γ in Ω, γ can be continuously
deformed to a point. This includes for example all star-shaped domains, but does not include
annuli. Every domain listed below will be simply connected.

The first kind of domain we want to study is a generalization of the upper half-plane:
a sector is a domain of the form Ω = {z ̸= 0 : α < arg z < β} for fixed real α < β. For
example, taking α = 0 and β = π gives the upper half-plane.

By rotating by −α, we can always assume α = 0, so we may as well assume our sector
is of the form {0 < arg z < α} for some α < 2π. The principle branch of z 7→ zA/α sends Ω
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to {0 < arg z < A}, so in particular z 7→ zπ/α sends Ω to the upper half-plane. Away from
z = 0, it is conformal and bijective, so this gives a conformal mapping Ω → H, which we
can compose with the standard map H → D to get a map Ω → D. Therefore any sector is
conformally equivalent to D.

Our next type of domain is a strip, which can be geometrically thought of as the region
between two parallel lines in C. By rotating, we can change any strip to a horizontal strip,
which is of the form {a < (z) < b} for some fixed real numbers a < b.

The map z 7→ ez then sends this strip to {ea < arg z < eb}, a sector. Since we know
we can map any sector conformally onto the unit disk and z 7→ ez is conformal, this gives a
conformal map Ω → D as desired.

Let’s try to work out a concrete example. Let D be the vertical strip {−1 < Re(z) < 1}.
To turn it into a horizontal strip, we multiply by i, which sends D to {−1 < Im(z) < 1}.
(More explicitly, if z = x + iy with −1 < x < 1, then iz = −y + ix with imaginary part x
satisfying the same bounds.) We can then exponentiate to get eiz ∈ {−1 < arg z < 1}, a
sector. Rotating by an angle of 1, we get eiz+i ∈ {0 < arg z < 2}, and taking the power of
π/2 we get eπiz/2+πi/2 ∈ {0 < arg z < π}, the upper half-plane. Finally composing with the
standard map we get

z 7→ eπiz/2+πi/2 − i

eπiz/2+πi/2 + i
=

eπiz/2 − 1

eπiz/2 + 1
.

This map sends 0 7→ 0, and in the limits +i∞ 7→ −1, and −i∞ 7→ 1.
Note that in general these maps D → D are not unique. Indeed, for any such map f , we

can compose with a conformal self-map of D to get a new map D → D. However, if we fix
some conformal map f : D → D and g : D → D is another such map, then f ◦ g−1 : D → D
is a conformal self-map of D, which we classified last time; such maps are parametrized by
a ∈ D and λ = eiθ ∈ ∂D, so the space of conformal maps D → D is also parametrized by
this data.

The final type of domain we want to consider today is a lunar domain. Although this
is not something we see often, it is actually a natural generalization of a strip: we’ve seen
before that a straight line in C can be thought of as a special kind of circle on C∪{∞}, with
the other circles corresponding to circles in C, i.e. “a straight line is a circle with infinite
radius.” A strip was the area bounded between two parallel straight lines in C; a lunar
domain D is a domain bounded between two curves in C which is each either a straight line
or the arc of a circle, which intersect at two (distinct) points z0 and z1.

If we were to allow z0 and z1 to go to infinity in opposite directions, we could think of
the resulting lunar domain as a strip, with both arcs given by parallel straight lines. Since
we don’t need to include z0 and z1 in D, only in the bounds, this makes more sense than one
might expect; formally we can justify it by showing that there is a conformal map between
a lunar domain and a strip, which by our results above boils down to showing there is a
conformal map from a lunar domain to D.

Another version of this manipulation is to take z0 = 0 and z1 → ∞ (in some direction).
In this case we have two rays meeting at 0, which we also think of as meeting at infinity;
this gives a sector! Let’s actually specify a conformal map from a lunar domain to a sector.

2



If f : C ∪ {∞} → C ∪ {∞} is a conformal map—i.e. a meromorphic function f : C → C
with nonvanishing derivative, exactly one pole, and whose image misses a single value c such
that f(∞) = limz→∞ f(z) = c, or an entire function f : C → C with f(∞) = ∞ (a pole at
infinity, i.e. in the case c = ∞), in both cases with nonvanishing derivative—sending z0 7→ 0
and z1 7→ ∞, then f will send D to this sector. Concretely, such a map f is given by

f(z) =
z − z0
z − z1

,

a fractional linear transformation. Since we know sectors map conformally to D, this shows
that lunar domains do as well.

Let’s give a concrete example of this. Let Γ+ and Γ− be circles centered at ±i respectively
with radii

√
2.

D

One can compute that the intersection of the circles is at ±1, so z0 = −1, z1 = 1, and so
per the above we should first study the image of D under f(z) = z+1

z−1
. Since both circles

pass through ±1 and f sends these points to 0 and ∞, f sends both circles to straight lines
passing through ∞. Note that Γ+ contains the point i(1 +

√
2), which is taken by f to

1√
2
(1− i) = e−πi/4, so this is the line through the origin of slope −1. Similarly, Γ+ contains

−i(1 +
√
2), which is taken by f to eπi/4, so Γ− is taken to the line of slope 1 through the

origin.
Finally, f(i) = −i, so the image of D is the sector {5π

4
< arg z < 7π

4
}.
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