

Lecture 23: the argument principle

Complex analysis, lecture 4

November 12, 2025

Let $f : D \rightarrow \mathbb{C}$ be an analytic function, and suppose we want to study the zeros of f . One method would be to study integrals of $\frac{1}{f}$ along some closed contour; then the residue theorem in a sense “counts” the poles of $\frac{1}{f}$ inside this contour, and so “counts” the zeros of f . However, this counting is really adding up the residues, which is pretty different: for example, it’s easy for the residues at different poles to cancel out.

A different way to turn zeros into poles is to take the logarithm. However, the logarithm of even a simple zero is actually an essential singularity, so this isn’t ideal; and of course the logarithm needs a branch cut to be analytic. We could solve both of these problems by differentiating: while e.g. $\log(z - z_0)$ is not as well-behaved as we would like, $\frac{d}{dz} \log(z - z_0) = \frac{1}{z - z_0}$ is as well-behaved as we could ask, for a pole. Does this avoid the residue issue above?

More generally, if f is analytic on D and has a zero at z_0 , the analogue of the above is $\frac{d}{dz} \log f(z) = \frac{f'(z)}{f(z)}$. Since f and f' are analytic, we can try to evaluate the residue of $\frac{f'}{f}$ at z_0 . For example, if f has a simple zero at z_0 , then $\frac{f'}{f}$ has residue $\frac{f'(z_0)}{f'(z_0)} = 1$! So the logarithmic derivative turns simple zeros into simple poles of residue 1, so the sum of the residues at these poles really does give a count of the zeros.

What about higher order zeros? If f has a zero of order n at z_0 , i.e. $f(z) = g(z)(z - z_0)^n$ for some analytic function $g(z)$ with $g(z_0) \neq 0$, then

$$\frac{f'(z)}{f(z)} = \frac{g'(z)(z - z_0)^n + ng(z)(z - z_0)^{n-1}}{g(z)(z - z_0)^n} = \frac{g'(z)}{g(z)} + \frac{n}{z - z_0}.$$

Since $g(z_0) \neq 0$, the first term is analytic at z_0 , and so the residue of $\frac{f'}{f}$ at z_0 is equal to the residue of $\frac{n}{z - z_0}$, i.e. n . Therefore summing up the residues of $\frac{f'}{f}$ is equivalent to counting the zeros of f , with multiplicity.

We could also allow f to be meromorphic, rather than holomorphic, on D , i.e. have poles as well as zeros. Viewing a pole of order n as a zero of order $-n$, the same argument above implies that if f has a pole of order n at z_0 , then $\frac{f'}{f}$ has a simple pole at z_0 with residue $-n$. Therefore for a meromorphic function f we can think of summing up the residues of $\frac{f'}{f}$ as the number of zeros of f , with multiplicity, minus the number of poles, with multiplicity. In other words, via the residue theorem, we have proven the following theorem:

Theorem (Argument principle). *Let D be a bounded domain with piecewise smooth boundary and f a meromorphic function on D which extends to an analytic function on ∂D , with $f(z) \neq 0$ for $z \in \partial D$. Let N_0 be the number of zeros of f in D , counted with multiplicity, and N_∞ the number of poles, also counted with multiplicity. Then*

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = N_0 - N_\infty.$$

Indeed, by the residue theorem the left-hand side is the sum of the residues of $\frac{f'}{f}$, which gives the right-hand side by the discussion above.

More generally, for a closed path γ in D along which f is analytic and nonzero, we call

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

the logarithmic integral of f along γ . Since the integrand is the logarithmic derivative, we could rewrite it as

$$\frac{1}{2\pi i} \int_{\gamma} d \log f(z).$$

Note however that $\log f(z)$ need not be analytic on D , hence we cannot simply evaluate this by the fundamental theorem of calculus (or else it would be zero for γ closed); $d \log f(z)$ is a closed differential, but is not exact in general.

To justify the terminology, recall that $\log z = \log |z| + i \arg z$, so $\log f(z) = \log |f(z)| + i \arg f(z)$. Therefore we can rewrite the above as

$$\frac{1}{2\pi i} \int_{\gamma} d \log |f(z)| + \frac{1}{2\pi} \int_{\gamma} d \arg f(z).$$

The first differential $d \log |f(z)|$, despite the non-analyticity of $\log |f(z)|$, is exact, and so the integral does not depend on the path, only on the endpoints of γ : if $\gamma : [a, b] \rightarrow \mathbb{C}$, then this is $\frac{1}{2\pi i}(\log |f(\gamma(b))| - \log |f(\gamma(a))|)$, so in particular for a closed path this is 0. So we are left with the argument integral

$$\frac{1}{2\pi} \int_{\gamma} d \arg f(z),$$

which is not exact: $\arg f(z)$ is multivalued, and it may well happen that as we go around γ , the ending value of $\arg f(z)$ is different from the starting value, even though these are at the same point. Consider for example $f(z) = z$ and γ the unit circle.

However, if we fix a continuous single-valued branch $A(t)$ of $\arg f(\gamma(t))$, then this integral is simply given by $\frac{1}{2\pi}(A(b) - A(a))$. Since two different choices of $A(t)$ differ by a constant, this is well-defined; up to the factor of $\frac{1}{2\pi}$, it is called the increase in argument of f along γ . (So for $f(z) = z$ and γ the unit circle as above, this would be 2π , hence the integral would be 1, compatibly with the argument principle.) By splitting the curve γ into pieces and adding up the increases in argument of f along each, we can often evaluate this integral, and hence apply the argument principle, without too much direct calculation.

To illustrate the theorem, consider the polynomial $p(z) = z^6 + 9z^4 + z^3 + 2z + 4$. How many zeros does p have (counting multiplicity) in the first quadrant $0 < \arg z < \pi/2$?

Note first that p has no zeros on the positive real line, since for $x \geq 0$ we have $p(x) \geq 4$. On the positive imaginary line, if $z = ix$ for $x \geq 0$ we have $p(ix) = -x^6 + 9x^4 - ix^3 + 2ix + 4$, so with real part $-x^6 + 9x^4 + 4$ and imaginary part $-x^3 + 2x$. The imaginary part vanishes at $x = 0$ or $x = \pm\sqrt{2}$, and one can check that at both of these points the real part is nonzero, so $p(xi) \neq 0$ for all $x \geq 0$ as well.

Let D be the region $|z| < R$, $0 < \arg z < \pi/2$; so we want to count the limit of the number of zeros of p contained in D as $R \rightarrow \infty$. We know that p has no zeros along either of the straight edges contained in ∂D ; the remaining part of the boundary is the arc from R to Ri of angle $\pi/2$ and radius R , and since p has finitely many zeros there are no zeros on this arc once we choose R large enough. Therefore we can apply the argument principle: since p is holomorphic on D ,

$$\frac{1}{2\pi i} \int_{\partial D} \frac{p'(z)}{p(z)} dz = \frac{1}{2\pi i} \int_{\partial D} d \log p(z)$$

is the number of zeros of p in D .

For z positive real, $p(z)$ is positive real, so $\arg p(z) = 0$ and there is no increase in the argument as z moves from 0 to R along the real axis. Along the quarter-circle of radius R , for $|z| = R$ large enough $p(z) \approx z^6$, so $\arg p(z) \approx \arg(z^6) = 6 \arg z$, so the increase in argument is approximately $6 \cdot \frac{\pi}{2} = 3\pi$. (This approximation is good enough because after dividing by 2π , the integral should give an integer, so we can just take the nearest integer multiple of 2π at the end.) Finally, along the imaginary axis as z goes from Ri to 0, we saw above that $p(ix) = -x^6 + 9x^4 + 4 + (-x^3 + 2x)i$ for $x > 0$ has imaginary part zero only at $\sqrt{2}$; for $x > \sqrt{2}$ it is negative, and for $0 < x < \sqrt{2}$ it is positive. At Ri , $p(Ri) \approx (Ri)^6 = -R^6$, with argument approximately π , and the above shows that as x goes from R to $\sqrt{2}$, $p(xi)$ remains in the lower half-plane, and $p(i\sqrt{2}) = -2^3 + 9 \cdot 2^2 + 4 = 32$ with argument 2π , so the increase in argument along this line segment is π . Finally, as x goes from $\sqrt{2}$ to 0, at both endpoints $p(z)$ is positive real, and in between it remains in the upper half-plane, so the increase in argument is 0.

Therefore we have found that the total increase in argument is (in the limit as $R \rightarrow \infty$) $0 + 3\pi + \pi + 0 = 4\pi$, and so the number of zeros in the first quadrant is $\frac{4\pi}{2\pi} = 2$. With the help of a computer, one could compute that these are at approximately $z \approx 0.0426 + 3.0087i$ and $z \approx 0.56725 + 0.64665i$.

A more conceptual application is Rouché's theorem.

Theorem. *Let D be a bounded domain with piecewise smooth boundary, and let f, h be analytic functions on $D \cup \partial D$ such that $|h(z)| \leq |f(z)|$ for $z \in \partial D$. Then f and $f + h$ have the same number of zeros in D (counted with multiplicity).*

In other words, we can perturb f by a function which is “small” relative to f in a certain sense without changing the number of zeros.

Proof. Note that the assumptions imply $f(z) \neq 0$ for $z \in \partial D$. We have $f(z) + h(z) = f(z) \left(1 + \frac{h(z)}{f(z)}\right)$, and since $|h(z)| < |f(z)|$ the second factor is in a disk of radius 1 centered at 1, and so in particular is in the right half-plane. Therefore $\arg(f(z) + h(z)) = \arg f(z) + \arg \left(1 + \frac{h(z)}{f(z)}\right)$, and the increase in argument of the second term as z moves along ∂D is 0. Therefore the total increase in argument of $f + h$ is the same as that of f , so the claim follows from the argument principle. \square

A fun consequence is the following slick proof of the fundamental theorem of algebra. Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$. On the boundary of a disk of sufficiently large radius R centered at the origin, we have $|a_n z^n| > |a_{n-1} z^{n-1} + \cdots + a_0|$, so f has the same number of zeros within this disk as $a_n z^n$, which of course has n zeros with multiplicity, namely a single zero of order n at $z = 0$.

A more concrete application is the following. Consider the equation $e^z = 1 + 2z$. What are the solutions with $|z| < 1$?

One solution is given by $z = 0$. Are there any others?

Rewriting this as $e^z - 1 - 2z = 0$, we want to write the left-hand side as $f + h$ for some f and h satisfying the hypotheses of Rouché's theorem: that is, on the unit circle, $|h| < |f|$. Choosing $f(z) = -2z$ and $h(z) = e^z - 1$ works: for $|z| = 1$, we have $|-2z| = 2$ and $|e^z - 1| = |z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \cdots| \leq |z| + \frac{1}{2}|z|^2 + \cdots = e^{|z|} - 1 = e - 1 < 2$. So $e^z - 1 - 2z$ has the same number of zeros in the unit disk as $-2z$, which has only a single zero at $z = 0$, so we can answer the question above in the negative: $z = 0$ is the only solution of $e^z = 1 + 2z$ in the unit disk. (It is *not* however the only solution in \mathbb{C} , e.g. $z \approx 1.25643$ also works; in fact there are infinitely many solutions.)