
Lecture 21: the residue theorem

Complex analysis, lecture 4

November 3, 2025

In last week’s lectures, we saw the following fact: if f has an isolated singularity at z0
and is analytic in a punctured disk {0 < |z − z0| < r} centered at z0, then it has a Laurent
series on this punctured disk,

f(z) =
∞∑

n=−∞

an(z − z0)
n.

In the last unit, we saw another fact: if γ is a circle around z0 of radius less than r, so that
f is analytic on γ, then ∫

γ

(z − z0)
n dz =

{
2πi n = −1
0 n ̸= −1

.

Combining these facts, we can study the integral of f around γ:∫
γ

f(z) dz =

∫
γ

∞∑
n=−∞

an(z − z0)
n dz

=
∞∑

n=−∞

an

∫
γ

(z − z0)
n dz

= 2πia−1.

This motivates the following definition. If f is analytic on a punctured disk centered
at z0 (i.e. if either f is analytic at z0, or z0 is an isolated singularity of f), then we write
Resz0(f) (also sometimes denoted Res(f, z0) or Resf (z0)) for the coefficient of (z − z0)

−1 in
the Laurent expansion of f at z0.

Recalling the formula for the Laurent coefficients, we have

Resz0(f) =
1

2πi

∫
γ

f(z) dz

for γ as above; however we will usually want to use the residue to compute the integral
rather than the other way around, so it is generally better to compute the residue directly
from the Laurent expansion, or from some rules we will see below.

Note that if f is analytic at z0, or has a removable singularity there, then all Laurent
coefficients of negative powers of z − z0 are zero, so in particular Resz0(f) = 0. Thus the
above recovers Cauchy’s theorem in this case.

More interestingly, this lets us compute integrals around circles containing singularities,
generalizing Cauchy’s theorem, and singularities different from the type covered in Cauchy’s
formula. By the deformation theorem, this actually generalizes to integrating around the
boundaries of arbitrary domains containing isolated singularities. Pushing this argument,
we get the following theorem, the final key theorem in this class for computing integrals.
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Theorem (Residue theorem). Let D ⊂ C be a bounded domain with piecewise smooth bound-
ary, and let z1, . . . , zm be points in D such that f : D \{z1, . . . , zm} → C is an analytic func-
tion extending to D ∪ ∂D, which we think of as a function on D with isolated singularities
at the zi. Then ∫

∂D

f(z) dz = 2πi
m∑
i=1

Reszi(f).

Proof. By the deformation theorem (or Cauchy’s theorem), we can turn the left-hand side
into

m∑
i=1

∫
γi

f(z) dz

where γi is a circle of sufficiently small radius centered at zi. By the argument above,∫
γi
f(z) dz = 2πiReszi(f), and adding up these terms gives the claim.

If f(z) = g(z)
z−z0

where g is analytic on D, then writing g(z) =
∑∞

n=0 an(z − z0)
n as its

Taylor expansion, we have

f(z) =
1

z − z0

∞∑
n=0

an(z − z0)
n =

∞∑
n=−1

an+1(z − z0)
n,

so the residue as z0 is a0 = g(z0). Therefore the residue theorem gives∫
∂D

g(z)

z − z0
dz =

∫
∂D

f(z) dz = 2πig(z0),

which recovers Cauchy’s integral formula for g. We can similarly recover the version for
derivatives.

This is an extremely useful theorem: it lets us evaluate, for example, line integrals of
meromorphic functions, which none of our methods so far will let us solve in general. It also
has applications to usual real integrals, as well as theoretical applications.

In order to use it though we first need to know how to compute residues. We’ve already
covered the simplest case: when f is analytic at z0, the residue is zero. The next-simplest
case is when f has a simple pole at z0, i.e. a pole of order 1: the Laurent series is then given
by

f(z) =
∞∑

n=−1

an(z − z0)
n =

a−1

z − z0
+ a0 + a1(z − z0) + · · · .

Therefore
(z − z0)f(z) = a−1 + a0(z − z0) + · · ·

and so
lim
z→z0

(z − z0)f(z) = a−1 = Resz0(f).

This is a frequently useful formula. For example, consider f(z) = 1
z2+1

at z = i. Although by

factoring we can see that f(z) = 1
(z+i)(z−i)

has a simple pole at i and −i, it isn’t necessarily
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immediately obvious what the residue is, without computing the Laurent series. However
by taking the limit we can find it quickly:

Resi(f) = lim
z→i

(z − i)

(z + i)(z − i)
=

1

2i
= − i

2
.

However, if f has a higher-order pole, there is no guarantee that this limit will exist. For
example, if it has a double pole,

f(z) =
∞∑

n=−2

an(z − z0)
n =

a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · ,

so to get a holomorphic function we multiply by (z − z0)
2 to obtain

(z − z0)
2 = a−2 + a−1(z − z0) + a0(z − z0)

2 + · · · .

To extract a−1, now the coefficient of z− z0, we now need to differentiate and evaluate at 0,
so we find

Resz0(f) =
d

dz
((z − z0)

2f(z))
∣∣∣
z=z0

.

In fact, this argument still applies if f has a simple pole, or even if it is analytic at z0.
For f as above, with a simple pole at i, we have (z − i)2f(z) = z−i

z+i
= 1 − 2i

z+i
, with

derivative 2i
(z+i)2

; evaluating at z = i gives 2i
(2i)2

= −2i
4
= − i

2
, as above. For an example with

a double pole, we could take f(z) = 1
(z2+1)2

= 1
(z+i)2(z−i)2

, now with double poles at ±i; now
this formula gives

Resi(f) =
d

dz

(z − i)2

(z + i)2(z − i)2

∣∣∣
z=i

=
d

dz

1

(z + i)2

∣∣∣
z=i

= − 2

(z + i)3

∣∣∣
z=i

= − 2

(2i)3
= − i

4
.

With slightly more difficulty, we can extend this argument to poles of any order. If f has
a pole of order at most N at z0, so

f(z) =
a−N

(z − z0)N
+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0) + · · ·

(including the case a−N = 0, in which case it is a pole of lower order), we have

(z − z0)
Nf(z) = a−N + a−N+1(z − z0) + · · ·+ a−1(z − z0)

N−1 + a0(z − z0)
N + · · ·

and so differentiating N − 1 times and evaluating at z0 gives

Resz0(f) = a−1 =
1

(N − 1)!

(
d

dz

)N−1 (
(z − z0)

Nf(z)
) ∣∣∣

z=z0
.

For a pole of infinite order (i.e. an essential singularity), although the residue theorem
remains true, we cannot easily evaluate the residue in this way. The only hope is to write
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down the Laurent series directly and thus evaluate a−1, which is fortunately often possible
in practice at points of interest.

Since we are especially interested in meromorphic functions f
g
, let’s mention the following

special case: if f and g are both analytic at z0 and g has a simple zero at z0, so that f
g
has

either a removable singularity (if f has a zero) or a simple pole (if not) at z0. We have

Resz0(f/g) = lim
z→z0

(z − z0)f(z)/g(z) =
f(z)

limz→z0
g(z)−g(z0)

z−z0

=
f(z)

g′(z)
,

since g(z0) = 0. In particular,

Resz0
1

g
=

1

g′(z0)
.

Note that if g has a simple zero at z0, then by definition g′(z0) ̸= 0, so this is well-defined.
Applying this rule to f(z) = 1

z2+1
as above, we find

Resi
1

z2 + 1
=

1

2z

∣∣∣
z=i

=
1

2i
= − i

2
,

just as above.
Let’s mention one more method that sometimes simplifies otherwise difficult calculations:

if f and g both have a simple pole at z0, then we know that fg has a double pole at z0.
Computing residues of double poles is harder in general than for simple poles. If we know
the first few terms of the Laurent expansions, though, things simplify: if

f(z) =
a−1

z − z0
+ a0 + · · · , g(z) =

b−1

z − z0
+ b0 + · · · ,

then

f(z)g(z) =
a−1b−1

(z − z0)2
+

a−1b0 + a0b−1

z − z0
+ a−1b1 + a1b−1 + a0b0 + · · · ,

so fg has residue a−1b0 + a0b−1 at f . Note that this doesn’t always require knowing the
full Laurent expansion; for example, if you know the residues of f and g at z0 (e.g. by the
methods above), then you can compute a0 and b0 by taking the limits as z → z0 of f(z)− a−1

z−z0

and g(z)− b−1

z−z0
respectively.

An example where this method makes things easier is on the homework (though one can
also always compute it in other ways). More generally, you should be on the lookout for
different ways to manipulate series into giving you the residues.

We now turn to some simple examples of using the residue theorem. Let D be the disk
of radius 5 centered at z0 = 0, and consider∫

∂D

1

sin z
dz.

We’ve seen that sin z has simple zeros at πn for every integer n, so 1
sin z

has simple poles at
these points; the zeros in this region are 0, π, and −π. What remains is to compute the
residues at these points.
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By the rule above, these are 1
cos(0)

= 1, 1
cos(π)

= −1, and 1
cos(−π)

= −1. Therefore by the
residue theorem we have ∫

∂D

1

sin(z)
dz = 2πi(1− 1− 1) = −2πi.

This is not an integral we could have computed by any of our previous methods!
There are many more examples of this type, sometimes involving more work to compute

the residues; more examples appear on your homework. For now, let’s pivot to another type
of integral, which has not come up too much so far in complex analysis: real integrals of real
functions.

We’ve seen that the residue theorem is particularly easy to apply to meromorphic func-
tions, of which the simplest are rational functions. Real integrals of rational functions how-
ever can be very difficult to compute, or require non-obvious tricks which we can now get
around.

Let’s start with a simple example, with our standard example above: consider∫ ∞

−∞

1

x2 + 1
dx = lim

N→∞

∫ N

−N

1

x2 + 1
dx.

Of course, we can use the inverse tangent function to compute this integral; the answer
should be limN→+∞(tan−1(N)− tan−1(−N)) = π

2
+ π

2
= π. However, this requires knowing

about inverse trigonometric functions, which aren’t obviously related to rational functions;
moreover it’s not clear how to generalize this approach to other rational functions.

Let’s instead apply the residue theorem. How? To use the residue theorem, we need to
have a domain D whose boundary coincides with the path along which we want to integrate.
A path from −N to N along the real axis is not closed, but we can view it as part of a
semicircle of radius N centered at 0, so if D is the corresponding half-disk then its boundary
is the union of the path ℓ from −N to N along the real axis and the arc γ(t) = Neit for
0 ≤ t ≤ π. Then we can write∫

∂D

1

z2 + 1
dz =

∫ N

−N

1

x2 + 1
dx+

∫
γ

1

z2 + 1
dz.

On the left, we can compute this integral via the residue theorem: the only singularity
enclosed by this path is at i, where we have computed the residue to be 1

2i
, so the residue

theorem tells us that the integral is 2πi · 1
2i
= π. On the right, the first integral is what we

want to evaluate; for the second, we can apply the ML bound. Since on this arc |z| = N ,
we have

∣∣ 1
z2+1

∣∣ ≤ 1
N2 , while the path has length πN , so the integral is bounded in absolute

value by π
N
. As N → ∞, the second integral therefore tends to 0, and so the first must tend

to π.
More heuristically, we could view the real line as the boundary of the upper half-plane,

and apply the residue theorem, since the only singularity in the upper half-plane is i. How-
ever, note that this region is not bounded, so this is only a heuristic and the residue theorem
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does not literally apply; we need to take the limit and show that the second term tends to
zero.

This method of course obtains the same result as the one involving the inverse tangent.
However, it generalizes much more directly. To compute the integral∫ ∞

−∞

P (x)

Q(x)
dx = lim

N→∞

∫ N

−N

P (x)

Q(x)
dx,

where P and Q are polynomials and, to ensure that the integral converges, degP+2 ≤ degQ
and Q has no zeros on the real line, then taking D to be the half-disk of radius N as above,
by exactly the same argument the integral over its boundary is equal to the integral over a
portion of the real line plus an integral over the arc, and in the limit the integral over the
arc vanishes by the ML bound. Hence we can compute these real integrals by studying the
residues of the integrands in the complex plane.

Variants of this method are common, and some appear on the homework. For example,
we sometimes want to study integrals over the positive real numbers, rather than all reals; in
this case we could take a quarter-circle and include an integral along the imaginary axis, or
take a semicircle centered at N/2, depending on the integrand. We can study more general
functions than rational functions, too; a common case is a combination of rational and
trigonometric functions, by using eiz in place of sin z or cos z and then taking the imaginary
or real parts at the end, respectively.
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