Lecture 20: isolated singularities
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1. ISOLATED SINGULARITIES

In the past, although we’ve used the term “singularity” freely, we’ve been a little vague about
what we mean by it. We could take the following, rather naive definition: a singularity of a
function f is any point in C at which f is not analytic.

This works fine for all purposes so far, but is not totally satisfactory. For example, it
could be that f is defined on some domain D C C, e.g. some disk of finite radius, and
outside of D it simply does not make sense to talk about f. In this case, per the definition
above we would say that f has a singularity at every point in C\ D, which does not match
our intuition very well.

Instead, we typically want to think about functions which are almost analytic on C (or
on some subdomain), away from some set of points. This set of points doesn’t need to be
finite, but it shouldn’t be able to form dense regions: in particular every point should be
isolated. (We sometimes in this case say that this set is itself isolated, or that it is discrete.)

This brings us to today’s topic: we say that a point z; € C is an isolated singularity of
f if it is a singularity, i.e. f is not analytic at zp, and there is some r > 0 such that f is
analytic on the punctured disk 0 < |z — z9| < r. At the end of yesterday’s class, we noted
that every singularity of a meromorphic function (i.e. the ratio of two analytic functions) is
isolated, so this is a useful notion.

Since f is defined on an annulus around z, as above (with radii 0 and ), we can study

its Laurent series at zj:
o

f(z) = Z an(z — 29)".

n=—oo

Recall that this series is unique, so all of the data of f on this punctured disk is classified
by the Laurent series. We can therefore study the singularity by studying the series.
We make the following definition: say that the isolated singularity of f at 2, is

e removable if a, = 0 for n < 0;
e a pole if there are only finitely many n < 0 such that a,, # 0;
e an essential singularity if there are infinitely many n < 0 such that a,, # 0.

So every isolated singularity is either removable, a pole, or an essential singularity. We study
each of these types in turn.



Removable singularities

If a, = 0 for n < 0, then the Laurent series becomes

F(2) =) an(z = 2)",

and so the right-hand side is analytic at z = zy, with value ag. Thus although f a priori

need not be analytic—or even defined—at zp, we can find an analytic function f which is

analytic at zo and such that for z in the punctured disk around zy, f(z) = f(z), so this

gives an analytic extension of f to zy. Thus for example a removable singularity would not

provide an obstruction to the radius of convergence of a Taylor series at a nearby point.
For example, consider

Although a priori f is not defined at 0, the Laurent series has no negative terms, so it extends
to an analytic function at z = 0, and indeed on the whole complex plane.

If f has a removable singularity at zp, then it is bounded near zy, as can easily be seen
from its Taylor expansion. Conversely, one can show that if it is bounded near zy, then in
order to prevent the (z — zp)" terms from exploding to infinity for n < 0, we must have
a, = 0 for all n < 0, i.e. f has a removable singularity at z.

Poles

If there are finitely many n < 0 such that a, # 0, we can choose the largest integer N such
that a_y # 0, i.e. for all n > N we have a_,, = 0. In this case

- N L, 0 _
f(Z)— (Z—Zo)N+ +Z_ZO+CL0+CL1<Z Zo)+
1
= oy (o F Az =) ),

i.e. there exists a function
h(z)=a_y+a-ny+1(z—20)+---
which is analytic at zo with h(zy) = a_y # 0 such that

1) =

(z — 20)N°
In this case we say that f has a pole of order N at z.

Note the similarity of this definition to the definition of a zero of order N. Indeed, we
claim that f(z) having a pole of order N at zj is equivalent to ﬁ having a zero of order N
at zo: indeed, if f(z) = (ZE(ZZD)N with h(zp) # 0 and h analytic at zg, then
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and % is analytic and nonzero at zy since h is, so % has a zero of order NV at z5. The converse
is similar.

Like for zeros, we refer to a pole of order 1 as a simple pole, and to a pole of order 2 as
a double pole and so on. So for example f(z) = % has a simple pole at z = 0, with Laurent
expansion simply

fz) =271,
with only one term. A slightly less trivial example is f(z) = 1322', with Laurent expansion
1 1

which has a double pole at z = 0.

Similarly to the case of f having a zero of order 0, we sometimes say that f has a zero
of order 0 at z if the above holds with N = 0, i.e. if f is analytic (and nonzero) at z.
Note this is actually the same thing as having a zero of order 0. We can further unify the
definitions of poles and zeros of given order: a pole of order N is equivalent to a zero of
order — N, and vice versa.

It is sometimes useful to be able to refer to the non-analytic portion of a function f
having a pole at zy: let

-1
P(z) = Z an(z — 29)"
n=-—oo
be the principal part of f at zg. Then f(z) — P(z) is analytic at zo. This P(z) is the f; in
our decomposition from last time. When f has a pole at 2y, P has only finitely many terms,
so it is a polynomial in (z — 29) ™.

We showed that every zero of an analytic function (which is not identically zero) is isolated
with finite order. As a corollary, we conclude that every singularity of a meromorphic function
is a pole, since locally we can write it as an analytic function divided by some power of z — zj.
In fact, one can also show the converse: if a function is analytic on C away from a discrete
set of points, at each of which it has a pole, then it is meromorphic. Indeed, it suffices to
show that it is locally in a punctured disk around each point given by a ratio of holomorphic
functions; and at a pole of order NV, it can be written as

as above, which is meromorphic.

Essential singularities

The “worst” type of singularity is an essential singularity. We saw above that these do not
arise from meromorphic functions, but they can arise from natural compositions of them: a
common example is

[(z) = eV



at z = (0, with Laurent series given by

1 1 1
S
/() + z + 222 * 623
with infinitely many negative powers of z. Although these singularities are not poles, we can
often treat them as “poles of infinite order,” and will sometimes do so going forward.
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2. ISOLATED SINGULARITIES AT 00

We can also formulate this notion at the point at infinity, just like we did for zeros at
infinity. If g(z) = f(1/2), then we say that f has an isolated singularity at infinity if ¢ has
an isolated singularity at 0; or equivalently, if f is analytic on {|z| > R} for some R, but is
not (necessarily) analytic at infinity.

Letting

oo
flz) = Z anz "
n=—oo
be the Laurent expansion at infinity, we again say that the singularity at infinity is removable
if a,, = 0 for n < 0; a pole if a,, = 0 for all but finitely many n < 0; and otherwise an essential
singularity. A function with a removable singularity at infinity is analytic at infinity; f(oo)
is already defined by a limit, so it’s rarely useful to distinguish between the two notions.
Poles an essential singularities at infinity however are common.

For example, any rational function ggg for polynomials P, () is either analytic at infinity

(if deg P < deg @) or has a pole (with order deg ) — deg P, if this is positive). On the other
hand, a function like f(z) = e* has an essential singularity at oo, just as e'/# had an essential
singularity at 0.

One can generalize these examples to show that if f is a meromorphic function on C—i.e.
analytic away from a discrete set, possibly empty, at which it has poles—and it is analytic
or has a pole at infinity (in other words, if f is meromorphic on CU{oo}), then it is actually
a rational function, so a non-rational meromorphic function on C must have an essential
singularity at oo.

We quickly sketch the argument, which involves a little bit of topology: since CU {00} is
compact, any infinite set of points inside of it has some limit point, either finite or infinite, so
if the set of poles of f was infinite then it could not be discrete. Hence f must have finitely
many poles z1,..., 2z, in C, together with possibly a pole at infinity.

Multiplying by suitable factors of (z — z;)"i to get rid of each pole in C, and by z~%= to
get rid of the possible pole at infinity, we obtain a function g(z) which is analytic everywhere
on C and analytic at infinity, hence bounded. Therefore by Liouville’s theorem g is constant.
On the other hand, we obtained g from f by multiplying by finitely many rational functions,
so since ¢ is a constant f must be rational.

By going through this more carefully, one can find a formula for f as the sum of the
principal parts at each pole (each of which is a rational function). This process can be used
to find the partial fractions decomposition of any rational function, which came up last class,
and which should also be familiar from calculus.
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