
Lecture 2: stereographic projection and first branch cuts

Complex analysis, lecture 4

August 29, 2025

1. Stereographic projection

It is often helpful to “complete” the complex plane to get the “extended complex plane” by
adding a point at infinity, i.e. C ∪ {∞}. How should we think of this space?

We claim we should think of it as a sphere, “folding up” the plane and joining all the
“edges” (infinitely far from the origin) to a single point ∞. We’ll make sense of this by
writing down an explicit bijection between C ∪ {∞} and the unit sphere S2 = {X, Y, Z ∈
R : X2 + Y 2 + Z2 = 1}.

The idea is this. Let N = (0, 0, 1) ∈ S2 be the “north pole” of the sphere, and P =
(X, Y, Z) any other fixed point. We can draw a line passing through these two points; since
the only point on the sphere with Z-coordinate equal to 1 is N , for P ̸= N this line is not
parallel with the X-Y -plane (i.e. the plane Z = 0) and so intersects it at some point z.
We claim that the map P 7→ z is a bijection from S2 \ {N} to C; so we can think of ∞ as
corresponding to N , giving a bijection S2 → C ∪ {∞}. (Note that this is really about the
plane R2, and doesn’t a priori involve the complex structure!)

Before proving this, let’s think about some examples to get a feel for this mapping. If we
took P to be the south pole, (0, 0,−1), then the line through N and P passes through the
X-Y -plane at z = (0, 0). If P is itself on this plane, then z = P (or rather, if P = (X, Y, 0),
then z = (X, Y )). As P approaches N , the corresponding point z tends to infinity, at least
in absolute value, so it makes some sense to say N should correspond to the point at infinity.

How should we go about proving this? Let’s start by finding a formula for z. Points on
the line connecting N and P are given by (1 − t) · N + t · P = (tX, tY, 1 − t + tZ); we’re
looking for the point on this line with last coordinate zero, i.e. 1− t+ tZ = 1− t(1−Z) = 0,
so t = 1

1−Z
. Therefore z is given by the first two coordinates: z = (X/(1 − Z), Y/(1 − Z)).

In the complex language,

z =
X

1− Z
+

Y

1− Z
i.

We can now construct an inverse, showing that this is in fact a bijection. Given z = (x, y),
we want to find (X, Y, Z) satisfying X2 + Y 2 + Z2 = 1 such that x = X/(1 − Z) and
y = Y/(1 − Z). Recalling the notation t = 1

1−Z
, we multiply the defining equation for the

sphere by t2 with x = tX, y = tY , and tZ = Z
1−Z

= t− 1, we get

x2 + y2 + (t− 1)2 = t2,

and solving for t gives

t =
1

2
(x2 + y2 + 1) =

1

2
(|z|2 + 1).

Using the equations above, we solve to get

X = x/t =
2x

|z|2 + 1
,
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Y = y/t =
2y

|z|2 + 1
,

Z =
t− 1

t
=

|z|2 − 1

|z|2 + 1
.

So we can invert the transformation.
In addition to giving us a new way to think of the (extended) plane, this correspondence

also satisfies some nice properties. For example, longitudinal lines on the sphere map to
straight lines on the plane, while latitudinal lines map to circles in the plane. More generally,
every circle on the sphere maps to either a circle or a line in the plane, and vice versa lines
and circles on the plane correspond to circles on the sphere; when we add the point at infinity,
we can think of straight lines in the plane as circles passing through the point at infinity.
The extended complex numbers, thought of as a sphere, are often called the Riemann sphere.

2. Squares and square roots

When dealing with real functions, there’s a standard way to visualize them, namely by
graphing them: we put the domain on one axis and the codomain on the other, and plot
the graph of the function on the resulting two-dimensional space. When we’re working with
complex functions, both the domain and codomain are given by the complex plane, so the
resulting space would be four-dimensional, which is much harder to visualize; so we need
another approach. There are many ways of doing this, such as using color or graphing the
real and imaginary parts separately. We want to introduce another: graphing how the values
of the function change as the inputs change.

Let’s work with the function f(z) = z2. This is easiest to think about in polar coordinates:
if z = reiθ, then f(z) = z2 = r2e2iθ, so f squares the modulus and doubles the argument.

Graphically, squaring the modulus is straightforward enough in terms of scaling, so let’s
think about points on the unit circle. Here as z moves around the unit circle, i.e. as θ goes
from −π to π, z2 moves around the unit circle twice as fast: the argument goes from −2π
(equivalently, zero) to 2π (again) in this same period. So if we just wanted z2 to go around
the unit circle, from −π to π, we should take θ from −π/2 to π/2.

In particular, if we wanted to find an inverse for f , we would need make a restriction
something like this. That is: writing z = reiθ with −π < θ ≤ π, we can find a square root
of z given by z =

√
reiθ/2.

We note though that something weird happens near the ray θ = π: if θ = π− ϵ for some
very small positive ϵ, then eiθ is very close to eπi = −1, and in this model its square root
eiθ/2 is very close to eπi/2 = i. However, if we instead looked at e−iθ = ei(ϵ−π), which is also
very close to −1 but on the other side of the real axis, we would find that its square root
is e−iθ/2 which is very close to e−πi/2 = −i. So this is quite far from

√
eiθ = eiθ/2, even as

ϵ → 0. In other words, this square root is not continuous!
Now, it only fails to be continuous near this ray θ = π; elsewhere everything is fine.

You might point out that this failure of continuity is only due to our particular choice of
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−π < θ ≤ π, we could have chosen a different parametrization; but that would just move
the discontinuity somewhere else.

To avoid having to think of this as a discontinuity, we make a “branch cut” in the complex
plane along the negative real axis. If we think of this as a boundary, so we no longer think
of points like 1 + iϵ and 1− iϵ as close to each other, then we can now describe our square
root function as a continuous function on this slit plane.

Now, observe that our square root z = reiθ 7→
√
reiθ/2 has image in complex numbers

with argument between −π/2 and π/2. Translating back to Cartesian coordinates, this is
equivalent to having positive (or at least nonnegative1) real part. Restricted to nonnegative
real numbers, this gives the positive square root. But we could also take the negative square
root, which in the complex setting has image in complex numbers with argument less than
or equal to −π/2 or greater than π/2. To make this nicer, we could translate by 2π and say
these have argument between π/2 and 3π/2.

These options for the square root function, which is a priori multivalued, are called its
branches; let’s call the “positive” branch we wrote down above f−1

1 , given by f−1
1 (reiθ) =√

reiθ/2, and the other branch f−1
2 , which is given by −f−1

1 . Each of these naturally lives on
the slit complex plane we described above. If we wanted to be able to cross the negative real
axis, we would have to combine these two branches somehow.

Let’s return to the example above, z = eiθ where θ = π − ϵ. Here f−1
1 (z) was near i. As

ϵ → 0, so z → −1 from the positive imaginary side, this approaches i; but when ϵ becomes
negative, so z crosses the negative real axis, then f−1

1 (z) jumps to near −i, as we saw before.
However, f−1

2 (z) = −f−1
1 (z) is then near +i, i.e. near the value of z on the other side! So if

we wanted to define a single inverse to f , we would take our two copies of the slit plane and
glue them together: the top edge of the slit on the first plane is glued to the bottom edge
on the second plane, and vice versa.

This space is a little hard to imagine; by thinking about how you deform this space,
you can shape it into a sphere with two punctures. We can see this more concretely as
follows: the function f(z) = z2 gives a bijection between this space and C \ {0} (we have to
exclude z = 0 to make sure the polar representation is well-defined, and indeed at zero the
square root is only single-valued), and by stereographic projection we can think of C \ {0}
as (C ∪ {∞}) \ {0,∞} ≃ S2 \ {0,∞}.

This is the Riemann surface for the square root function. We’ll see more examples of
Riemann surfaces next week; note that they don’t appear on homework 1, because some of
the relevant material is scheduled for the end of next week and so you would have very little
time to do those problems, but they will appear on the following homework.

1There is some subtlety when the real part is exactly zero: then we include the positive imaginary axis
but not the negative one, i.e. xi for x ≥ 0.
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3. The complex exponential

Finally, let’s return to our definition of the exponential function z 7→ ez in the complex
setting. If z = x+ iy, then we set

ez = ex · eiy = ex · (cos y + i sin y)

where ex is as usual for a real number x. We saw when studying polar representations that
this satisfies the additivity property ea+b = ea · eb: on the real component, this is a standard
property, and on the imaginary component this means that rotating by y1 and then by y2 is
the same as rotating by y1 + y2. We can likewise confirm properties such as

e−z =
1

ez
, (ea)b = eab.

We see that the exponential function is easiest to define in terms of Cartesian coordinates.
On the other hand, its output is easiest to understand in terms of polar coordinates: while
computing its real and imaginary parts involves the use of trigonometric functions, we can
quickly see that |ex+iy| = ex while arg(ex+iy) = y. So when we repeat our idea of comparing
how changes in the domain translate to changes in the codomain, we use changes in Cartesian
coordinates, i.e. in the real and imaginary part, on the domain, and changes in polar
coordinates on the codomain. Changes in the real part scale the modulus by an exponential
factor, so horizontal lines in the complex plane map to rays in the codomain; and changes
in the imaginary part shift the argument, so vertical lines map to circles.

Unlike the square root function, the exponential function is not multivalued, so we don’t
need to worry about its Riemann surface. However, it is not injective, unlike in the real
setting: for example, e2πi = e0 = 1. More generally, f(z) = ez is periodic with period 2πi:
that is, f(z) = f(z + 2πi) for all z. This also means that f(z + 2πin) = f(z) for every
integer n, so the preimage of f(z) contains infinitely many points; so its inverse function will
be (very) multivalued! We’ll worry about this more next time.
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