
Lecture 19: Laurent expansions

Complex analysis, lecture 4

October 29, 2025

The basic idea of Taylor expansions is to write a given analytic function as a power series,
i.e. a linear combinations of zn for nonnegative n. If we instead allowed n to be any integer,
positive or negative, then what we would get is called a Laurent series expansion. Our main
goal for today is to introduce this notion, and see how we can compute it.

When working with power series, the main geometric object is a disk centered at our
point of interest z0, with some radius (possibly 0 or +∞). For Laurent series, the main
object will be an annulus, which can be thought of as a ring, or a disk with both an inner
and outer radius: if we fix 0 ≤ r < R ≤ +∞, the corresponding annulus centered at
z0 is the region {z ∈ C : r < |z − z0| < R}. In the special case where r = 0, this is
{0 < |z − z0| < R} = {|z − z0| < R} \ {z0}, and is sometimes called the punctured disk of
radius R around z0.

Note that unlike for disks, any annulus centered at z0 does not contain the point z0. This
is important: often our functions of interest will not be analytic at z0.

Fixing 0 ≤ r < R ≤ +∞ and an annulus D of radii r, R centered at z0, suppose that
f : D → C is an analytic function. Let D0 = {z : |z − z0| < R} and D1 = {z : |z − z0| > r},
so that D = D0 ∩D1.

Proposition. With notation as above, there exist unique analytic functions f0 : D0 → C,
f1 : D1 → C with f1 analytic at infinity with f1(∞) = 0 such that for z ∈ D,

f(z) = f0(z) + f1(z).

The condition that f1(∞) = 0 isn’t strictly necessary, one could also find a decomposition
with a different value of f1(∞); but imposing this condition makes the decomposition unique.
(Otherwise, we could just subtract a constant from f0 and add it to f1 to get a different
decomposition.)

Note that if f were analytic on all of D0, not just on D, then we could simply take f0 = f
and f1 = 0. Similarly, if f were analytic on D1 and at ∞, we could take f1 = f − f(∞) and
f0 = f(∞).

Proof. First, we show that if such functions f0, f1 exist, then they are unique. Suppose that
there was another pair g0 : D0 → C, g1 : D1 → C of analytic functions with g1 analytic at
infinity and f(z) = f0(z) + f1(z) = g0(z) + g1(z) for z ∈ D.

Define a function h : C → C by h(z) = f0(z)− g0(z) for z ∈ D0 and h(z) = g1(z)− f1(z)
for z ∈ D1; note that by the above equation, if z ∈ D = D0 ∩ D1 then the two definitions
agree, so this is well-defined. Since the fi and gi are analytic where they are defined, h
is analytic everywhere. As z → ∞, since f1 and g1 are analytic at infinity with value 0,
h(∞) = limz→∞ h(z) = 0, so h is bounded, hence by Liouville’s theorem h is constant, and
since h(∞) = 0 we must have h(z) = 0 for all z. Hence f0(z) = g0(z) and g1(z) = f1(z), i.e.
f0 and f1 are unique.
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Now we show that such fi actually exist. Choose some r < r′ < R′ < R. For r′ <
|z − z0| < R′, we can take the sub-annulus of radii r′, R′ centered at z0, which still contains
z, and its boundary is the union of the circles of radii r′ and R′, on which f is still analytic.
(We need to choose r′ and R′ rather than just using r and R to make sure that f extends
to the boundary.) Therefore by Cauchy’s formula

f(z) =
1

2πi

∫
|z−z0|=R′

f(w)

w − z
dw − 1

2πi

∫
|z−z0|=r′

f(w)

w − z
dw.

Let

f0(z) =
1

2πi

∫
|z−z0|=R′

f(w)

w − z
dw, f1(z) = − 1

2πi

∫
|z−z0|=r′

f(w)

w − z
dw.

Then for r′ < |z− z0| < R′ we have f(z) = f0(z) + f1(z); f0 is analytic on |z− z0| < R′, and
f1 is analytic on |z − z0| > r′ with the path viewed as the boundary of {z : |z − z0| > r′},
and is analytic at infinity with value 0 since limz→∞ f1(z) = 0. (One could also make a
more formal argument by evaluating on 1/z and taking a limit.) We are still using r′ and
R′ instead of r and R, but could conclude by taking the limit as r′ → r and R′ → R, or by
using the uniqueness part above to observe that the result is independent of r′ and R′.

Before proceeding let’s work out an example, which demonstrates the importance of fixing
the annulus. Consider f(z) = 1

(z−1)(z−2)
and z0 = 0. There are at least three different annuli

we could consider on which f is analytic: 0 < |z| < 1; 1 < |z| < 2; and 2 < |z|.
On the first annulus, which is a punctured disk, note that f actually extends to an

analytic function on |z| < 1, so we can take f0(z) = f(z) and f1(z) = 0.
Similarly on the third annulus, f is analytic at infinity with value limz→∞ f(z) = 0, so

we can just take f0(z) = 0 and f1(z) = f .
The most interesting case is the second annulus, where we cannot extend to |z| < 2 since

we have a pole at z = 1, nor to |z| > 1 since we have a pole at 2. Instead, we can use the
partial fraction decomposition:

f(z) =
1

(z − 1)(z − 2)
=

A

z − 1
+

B

z − 2
=

A(z − 2) +B(z − 1)

(z − 1)(z − 2)
=

(A+B)z − (2A+B)

(z − 1)(z − 2)

implies B = −A and so A = −1, so

f(z) = − 1

z − 1
+

1

z − 2
.

We note that f0(z) =
1

z−2
is analytic on |z| < 2 and f1(z) = − 1

z−1
is analytic on |z| > 1, and

is analytic at infinity with value 0, so f(z) = f0(z) + f1(z) has the desired properties.
In particular, note that the decomposition looks different depending which annulus we

take.
Suppose f is analytic on our annulus, so by our proposition we can write f(z) = f0(z) +

f1(z) with f0, f1 satisfying the properties above. Since f0 is analytic on |z| < R, we can
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write its Taylor series

f0(z) =
∞∑
n=0

anz
n.

Since f1 is analytic at infinity, with f(∞) = 0, we can write its Taylor series at infinity as

f1(z) =
∞∑
n=1

bnz
−n =

−1∑
n=−∞

b−nz
n.

Putting these together, if we write a−n = bn for n ≥ 1, we get

f(z) = f0(z) + f1(z) =
∞∑

n=−∞

anz
n

for z ∈ D, i.e. an expansion of f as a linear combination of zn over all integers n, as we
claimed we’d find. This is the Laurent expansion of f on D with respect to z0.

We’d like to have a formula for the coefficients an in terms of f . For the Taylor series
expansion—equivalently, the Laurent series in the special case where all an = 0 for n < 0—we
had

an =
1

n!
f (n)(z0) =

1

2πi

∫
|z−z0|=R′

f(z)

(z − z0)n+1
dz

for some R′ < R. The first formula doesn’t make sense when n is negative, but the second
formula actually still does, provided r < R′ < R, and the same proof applies:

1

2πi

∫
|z−z0|=R′

f(z)

(z − z0)n+1
dz =

1

2πi

∫
|z−z0|=R′

∞∑
m=−∞

amz
m−n−1 dz

=
1

2πi

∞∑
m=−∞

am

∫
|z−z0|=R′

zm−n−1 dz,

and the inner integral is 0 unless m− n− 1 = −1, i.e. m = n, in which case it is 2πi. Hence
the whole sum is just an as desired, whether n is positive or negative.

In particular, since the coefficients are determined by the values of the function, the
Laurent series expansion on a given annulus around a central point is unique (this would
also follow from the uniqueness arguments above).

Let’s return to our previous example of f(z) = 1
(z−1)(z−2)

on the most interesting annulus

1 < |z| < 2. Writing

f(z) = f0(z) + f1(z) =
1

z − 2
− 1

z − 1
,

we have

f0(z) =
1

z − 2
= −1

2
· 1

1− z/2
=

∞∑
n=0

− 1

2n+1
zn
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around z = 0, and

f1(z) = − 1

z − 1
= − 1/z

1− 1/z
=

∞∑
n=1

−z−n,

so

f(z) =
∞∑

n=−∞

anz
n

where an = − 1
2n+1 if n ≥ 0 and n = −1 if n < 0.

We could also expand f about one of the poles. Consider for example z0 = 1. Writing

f(z) =
1

(z − 1)(z − 2)
=

1

z − 1
· 1

(z − 1)− 1
,

by the geometric series this is

− 1

z − 1

∞∑
n=0

(z − 1)n =
∞∑

n=−1

−(z − 1)n

for 0 < |z − 1| < 1.
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