Lecture 19: Laurent expansions

Complex analysis, lecture 4
October 29, 2025

The basic idea of Taylor expansions is to write a given analytic function as a power series,
i.e. a linear combinations of 2" for nonnegative n. If we instead allowed n to be any integer,
positive or negative, then what we would get is called a Laurent series expansion. Our main
goal for today is to introduce this notion, and see how we can compute it.

When working with power series, the main geometric object is a disk centered at our
point of interest zy, with some radius (possibly 0 or +o00). For Laurent series, the main
object will be an annulus, which can be thought of as a ring, or a disk with both an inner
and outer radius: if we fix 0 < r < R < 400, the corresponding annulus centered at
2o is the region {z € C : r < |z — 29| < R}. In the special case where r = 0, this is
{0 < |z = 20| < R} ={]z — 20| < R} \ {20}, and is sometimes called the punctured disk of
radius R around zj.

Note that unlike for disks, any annulus centered at zy does not contain the point zy. This
is important: often our functions of interest will not be analytic at zj.

Fixing 0 < r < R < +o0 and an annulus D of radii r, R centered at zy, suppose that
f: D — Cis an analytic function. Let Dy = {2z : |z — 20| < R} and Dy = {z : |z — 29| > r},
so that D = Dy N D;.

Proposition. With notation as above, there exist unique analytic functions fyo : Dy — C,
fi1: Dy — C with f1 analytic at infinity with f1(co0) = 0 such that for z € D,

f(2) = fo(2) + f1(2).

The condition that fi(oco0) = 0 isn’t strictly necessary, one could also find a decomposition
with a different value of f;(c0); but imposing this condition makes the decomposition unique.
(Otherwise, we could just subtract a constant from f, and add it to f; to get a different
decomposition.)

Note that if f were analytic on all of Dy, not just on D, then we could simply take fy = f
and f; = 0. Similarly, if f were analytic on D; and at oo, we could take f; = f — f(o0) and

Jo= f(0).

Proof. First, we show that if such functions fy, f; exist, then they are unique. Suppose that
there was another pair gy : Dy — C, g1 : D; — C of analytic functions with g; analytic at
infinity and f(z) = fo(2) + f1(2) = go(2) + g1(2) for z € D.

Define a function h : C — C by h(z) = fo(z) — go(2) for z € Dy and h(z) = ¢1(z) — f1(2)
for z € Dy; note that by the above equation, if z € D = Dy N D; then the two definitions
agree, so this is well-defined. Since the f; and g; are analytic where they are defined, h
is analytic everywhere. As z — oo, since f; and g¢; are analytic at infinity with value 0,
h(oc) = lim, , h(z) = 0, so h is bounded, hence by Liouville’s theorem h is constant, and
since h(oco) = 0 we must have h(z) = 0 for all z. Hence fy(z) = go(2) and g1(2) = fi(z2), i.e.
fo and f; are unique.



Now we show that such f; actually exist. Choose some r < ' < R’ < R. For 1’ <
|z — 20| < R, we can take the sub-annulus of radii 7/, R’ centered at zy, which still contains
z, and its boundary is the union of the circles of radii " and R’, on which f is still analytic.
(We need to choose ' and R’ rather than just using r and R to make sure that f extends
to the boundary.) Therefore by Cauchy’s formula
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Then for ' < |z — 2| < R’ we have f(z) = fo(2) + fi1(2); fo is analytic on |z — 29| < R', and
f1 is analytic on |z — zp| > ' with the path viewed as the boundary of {z : |z — 2| > 7'},
and is analytic at infinity with value 0 since lim, ,o fi(z) = 0. (One could also make a
more formal argument by evaluating on 1/z and taking a limit.) We are still using " and
R’ instead of » and R, but could conclude by taking the limit as " — r and R’ — R, or by
using the uniqueness part above to observe that the result is independent of " and R’. [

Before proceeding let’s work out an example, which demonstrates the importance of fixing
1

the annulus. Consider f(z) = ey and zp = 0. There are at least three different annuli
we could consider on which f is analytic: 0 < |z] < 1; 1 < |z| < 2; and 2 < |z|.

On the first annulus, which is a punctured disk, note that f actually extends to an
analytic function on |z| < 1, so we can take fy(z) = f(2) and fi(z) = 0.

Similarly on the third annulus, f is analytic at infinity with value lim, ,, f(z) = 0, so
we can just take fo(z) =0 and fi(z) = f.

The most interesting case is the second annulus, where we cannot extend to |z| < 2 since
we have a pole at z = 1, nor to |z| > 1 since we have a pole at 2. Instead, we can use the

partial fraction decomposition:
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implies B=—A and so A = —1, so
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We note that fo(z) = -%5 is analytic on |z| < 2 and fi(z) = —-1; is analytic on |z| > 1, and
is analytic at infinity with value 0, so f(z) = fo(2) + fi1(z) has the desired properties.

In particular, note that the decomposition looks different depending which annulus we
take.

Suppose [ is analytic on our annulus, so by our proposition we can write f(z) = fo(2) +
fi(z) with fy, fi satisfying the properties above. Since fy is analytic on |z| < R, we can



write its Taylor series
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Since f; is analytic at infinity, with f(co) = 0, we can write its Taylor series at infinity as
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Putting these together, if we write a_,, = b,, for n > 1, we get

f(z) = fo(2) + filz Z anz"

n=—oo

for z € D, i.e. an expansion of f as a linear combination of 2" over all integers n, as we
claimed we’d find. This is the Laurent expansion of f on D with respect to z.

We’d like to have a formula for the coefficients a,, in terms of f. For the Taylor series
expansion—equivalently, the Laurent series in the special case where all a,, = 0 for n < 0—we
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for some R’ < R. The first formula doesn’t make sense when n is negative, but the second
formula actually still does, provided » < R’ < R, and the same proof applies:
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and the inner integral is 0 unless m —n —1 = —1, i.e. m = n, in which case it is 27i. Hence

the whole sum is just a, as desired, whether n is positive or negative.

In particular, since the coefficients are determined by the values of the function, the
Laurent series expansion on a given annulus around a central point is unique (this would
also follow from the uniqueness arguments above).

Let’s return to our previous example of f(z) =

1 < |z| < 2. Writing

m on the most interesting annulus
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around z = 0, and
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where a, = —5r if n > 0 and n = —1if n < 0.

We could also expand f about one of the poles. Consider for example zy = 1. Writing
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f<z):(2_1)(z—2):z—1'(z—1)—1’

by the geometric series this is

for 0 < |z—1] < 1.



