Lecture 18: analytic continuation

Complex analysis, lecture 4
October 24, 2025

In the first unit of this class, we were often concerned with what happens to a function
as we move along a path. In particular, if the path came back to the same point and had
a different value, that meant that the function couldn’t be continuous everywhere, which
presented a problem; we saw how to repair this sort of defect with branch cuts, and how to
view these functions as continuous on a Riemann surface.

We return to this idea, now thinking about analytic functions and with all the machinery
we've built up to study them. Now, we know that we can write an analytic function as a
power series; so instead of keeping track of just the value of the function as we move along
a path, we’ll keep track of how the power series expansion changes.

Let’s be more precise. Let v : [a,b] — D be a path in a domain D, and f be an analytic
function on D. Set zp = y(a) and z; = 7(b), so that this is a path from zy to z;. Since f is
analytic, we can expand it as a Taylor series about any point y(t).

The first thing to observe is that the radius of convergence of f at 7(t) continuously
depends on t € [a,b]. In fact, the radius of convergence R(zy) of the power series of f
around a point zg € D depends continuously on 2y, so the previous claim follows so long as
v is continuous. Indeed, let z; for now be any other point, which we imagine to be close
to z9. Since R(zp) is the distance from zy to the closest point z to zg to which f does not
extend analytically, and likewise R(z;) is the distance from z; to the closest point 2’ to zg
to which f does not extend analytically. Then R(z;) = |23 — 2/| < |21 — z]| (since 2’ is by
definition at least as close to 2z as z) and |21 — z| = |21 — 20+ 20 — 2| < |21 — 20| + |20 — 2| =
|21 — 20| + R(20). Exchanging zo and z;, we likewise have R(z) < |zo— 21|+ R(21), so we find
that |R(z0) — R(z1)| < |20 — z1]. (Here if both radii are infinite, we say that the difference is
0.) This is the definition of R(z) being a continuous function!

Thus for our path v, we can consider the disks of convergence along ~, which vary
continuously. This lets us define a domain containing z; and z; on which f is analytic.
Without this sort of technique, this may be difficult: the only other natural method is to
take a disk around zp, but we may run into poles of our function before reaching z;. By
choosing our path carefully, under favorable conditions we can avoid the poles to travel from
2o to 1.

Let’s now back up and make some definitions. If f is analytic on a neighborhood of z,
we say that it is analytically continuable along ~ if for every t € [a,b], f is analytic at (t),
and for ¢, close enough that the disks on which f(~(t)) and f(v(¢')) are analytic have some
intersection, the corresponding power series agree on these intersections. Then for ¢ and ¢/
close enough that the power series for f near (t) converges at ¢, by our results from last
time the power series at v(t') is actually determined by that at ~(¢), since the values of f on
a neighborhood of ¥(t') are determined by this power series. Moving continuously along +,
we see that everything is determined by the power series at the initial point 2.

We refer to the collection of power series for f at each (t) as the analytic continuation



of f along ~, and the power series at z; as the analytic continuation of f to z; along v. Then
we have shown the following;:

Proposition. The analytic continuation of f along v is unique if it exists, and the coeffi-
cients a,(t) of the power expansion of f at ~(t) and the radius of convergence R(y(t)) depend
continuously on t.

As a corollary, the analytic continuation of f to + along z; depends only on f, z, and
v. It is interesting to ask when it is independent of ~.

Let D be a domain, and suppose that f is analytic on D, and ~ is a path contained in
D. We claim that the analytic continuation of f from z, to z; is independent of . The
rough idea is that because f is well-defined and analytic everywhere in D, by some sort of
uniqueness theorem we should be able to show that the analytic continuation to z; is just
the expected, well-defined power series at z;.

The first thing that comes to mind is the identity theory for Taylor series, which showed
that if f and g are analytic on a disk and agree on a smaller disk, then they must agree on
the larger disk as well. However, D need not be a disk. Instead, we can use some of the
results we proved last time, coming from the study of zeros of analytic functions: we showed
that if f and g are analytic on any domain D and agree on some subset with at least one
non-isolated point, then f = ¢ on the whole domain D. This now suffices: fix once and for
all a choice of, for every z € D, a path ~, from z; to z, with ~,, the trivial path and ., =7,
and let g(z) be the analytic continuation of f along ~y, to z, which by construction is analytic
at z. Then f = g on a neighborhood of 2y, so f = g everywhere, i.e. no matter what paths
we choose, the analytic continuation is unique.

However, it is often interesting to look at cases where the analytic continuation does
depend on the path. This might seem contradictory, since we mostly care about analytic
functions, but recall the setup for branch cuts: if we take a path from zy to itself which
crosses a branch cut, then we expect that f at the start does not agree with f at the end.

Consider the example f(z) = /z, the principal branch of the square root; more precisely,
f(re??) = \/re®®/?, making a branch cut along some ray from the origin.

Consider the path y(t) = €' for 0 < t < 27, from 2y = 1 to itself in a loop around the
origin. At zy = v(0), f is analytic, with series expansion
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(there exists a precise formula for the coefficients, but it is a little annoying to write down so
we stick with the first few terms by computing derivatives). We can likewise find the power
expansion at z = €, which we write as
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is the opposite branch of the square root, just like we found when studying branches and
phase factors. Note that this does not contradict the result above because there is no way
to make f analytic on all of C, or even any domain in C containing v: in order for f to be
continuous we have to exclude some branch cut from 0 to oo, which will necessarily cross
the path ~.

Even if f is not known to be analytic on all of D, as in this example, just as for branch
cuts or integrals we can deform the paths: just as for the deformation theorems, if we can
continuously vary between two paths 7y and ~; while holding the endpoints zy, z; constant,
then the analytic continuation of f to z; along =, and along ~; agree. This is sometimes
called the monodromy theorem, and can be useful for calculating analytic continuations
along weird paths, by deforming them to simpler ones.

More generally, if f is analytic away from some isolated set of singularities, at any fixed
point zy we can only define f by a power series at zp in a disk of finite radius; sometimes
we will talk about the analytic continuation of f to C (other than the singularities) as the
(necessarily unique, as above!) analytic function on C whose restriction to the disk is this
power series. A simple example is the geometric series
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near zg = 0. If we define this to be our function, it is only well-defined on |z| < 1. However,
when |z|] < 1 we know that it satisfies the rule

(1=2)f(z) =1=0,

since in fact f(z) = =, so by the permanence principle for functional equations we know

that if f extends to an analytic function on C (minus some isolated set of points), it must
still satisfy this equation, i.e.
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is the unique extension of f to C\ {1}. Note that if we plugged in some z with |z| > 1 into
the original definition, we would still get something ill-defined: e.g. at z = —1, we have
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which plainly does not converge. This is one technique sometimes used to assign values to
divergent sums. Indeed, in the example above the partial sums alternate between 0 and 1,

so in some sense it is reasonable to say that if it were to converge, the right value would be
1

5.
However, if we were to plug in e.g. z = 2, we would get by this method
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which is plainly absurd, so don’t take this method too seriously. It is also not hard to find
different functions f obtaining the same sums by analytic continuation. Indeed, even for the
first, relatively reasonable-looking example above, consider
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which converges for |z| < 1. If we were to evaluate at z = 1 via the method above, we would
get
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assigning a different value to the same divergent sum.

It is however a very important method for defining functions on C minus an isolated
set, or more generally on larger domains, which might initially be defined by series—or
even integrals—convergent on a smaller region. Another important example is the gamma

function ~
I(s) = / tte t dt,
0

which converges when s has real part greater than 0. By integration by parts, one can show
I'(s)=(s—1I'(s—1),

I'(s). This lets us define I' on points with negative real part:
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not a priori defined, is given by the above formula with s = %:

so in turn I'(s — 1) =

for example, I'(—1/2),

r'(-1/2) = %/QF(l/Q) = —2I'(1/2).
One can calculate I'(1) = 1, so by the iterative rule I'(2) = 1-1 =1, I'(3) =2 -1 = 2,

['(4) = 3-2 =6, and so on: by induction we see that I'(n) = (n — 1)!. However, at s = 0

there is a pole, so by the rule above I' also has a pole at every negative integer. Other than

at these points, though, this lets us extend I' to an analytic function on C\ {0, —1,—-2,...}.



