
Lecture 17: series expansions at infinity and zeros

Complex analysis, lecture 4

October 22, 2025

1. Power expansions at infinity

We return to the perspective of the Riemann sphere, the complex numbers plus a point ∞.
We’ve seen before that thinking of this extension makes some statements nicer. Today, we
want to unify this perspective with our new tools for studying analytic functions.

If g is a function defined on some disk D centered at 0, we define f(z) = g(1/z), which
will then be defined for |z| sufficiently large (equivalently |1/z| sufficiently small), and we
say that f is analytic at infinity if g is analytic at 0. More broadly, we refer to a domain
D ⊂ C as a “neighborhood of ∞” if for R large enough, |z| > R implies that z ∈ D. Note
that this is equivalent to the set {z : 1

z
∈ D} containing {z : |z| < 1/R} \ {0}, i.e. being

a (punctured) neighborhood of 0. Given a function f on D, we say it is analytic at ∞ if
g(z) = f(1/z) is analytic at 0.

It is often useful to make a change of variables: set w = 1
z
, so that studying what happens

near z = ∞ is equivalent to studying what happens near w = 0, with which we are more
familiar. We will sometimes write f(∞) = limz→∞ f(z) = limw→0 g(w) = g(0), when the
limits exist.

For example, consider f(z) = z
z+1

, defined on |z| > 1 (or more generally on C \ {−1}).
Then g(w) = f(1/w) = 1/w

1/w+1
= 1

1+w
is analytic at w = 0 (in fact, at all w ̸= −1), so f is

analytic at ∞. We have

lim
z→∞

f(z) = lim
z→∞

z

z + 1
= 1 = lim

w→0
g(w) = g(0).

On the other hand, a function like f(z) = ez, while well-behaved everywhere in C, is
not analytic at ∞. Indeed, g(w) = f(1/w) = e1/w is not analytic at 0. More generally, a
necessary—but not sufficient—condition for f to be analytic at infinity is that the limit

lim
z→∞

f(z) = lim
w→0

g(w)

exist, which it does not in this case. (We might call this condition being continuous at
infinity, though this by itself won’t often come up.)

(Note in the above that the limit must exist as a complex number; the limit being infinite
does not suffice. However, there does exist a notion of analytic functions C∪{∞} → C∪{∞}
for which the limit being infinite, properly defined, would suffice, which we may come back
to later.)

If g(w) is analytic at 0, we have seen that for |z| < R for some radius 0 ≤ R ≤ +∞, we
can write

g(w) =
∞∑
n=0

anw
n = a0 + a1w + a2w

2 + · · ·
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where an = 1
n!
g(n)(0). Rewriting everything in terms of f and z, this gives us the expansion

f(z) =
∞∑
n=0

anz
−n = a0 +

a1
z

+
a2
z2

+ · · · ,

which we refer to as the series or Taylor expansion of f at infinity.
This is perhaps very strange-looking, but should be expected from the terminology: we

have argued before that if f is analytic at a point, then f admits a Taylor expansion centered
at that point; this is the extension of this principle to ∞.

What about the convergence of this series? We can study its convergence in terms of
that of g(w): the series for g(w) should converge absolutely to an analytic function of w for
|w| < R for some R, so the series for f should converge for |z| > 1

R
. If R = 0, then the

series converges nowhere; if R = +∞, i.e. g is entire, then the series for f also converges
everywhere except at z = 0 (where it is undefined, though f may extend to this point).

Let’s return to the example above. If f(z) = z
z+1

, we saw g(w) = 1
1+w

, which has power
expansion given by the geometric series in −w,

g(w) =
∞∑
n=0

(−1)nwn

for |w| < 1. Therefore

f(z) =
∞∑
n=0

(−1)nz−n

for |z| > 1. Indeed, the series on the right can be viewed as the geometric series in −1/z,
and we can check explicitly that this recovers f(z).

2. Zeros of analytic functions

Let

f(z) =
∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · .

We want to study the zeros of f .
In general terms, these could be anything. There is one point which is natural to study,

though: at z = z0, all higher terms vanish and we find f(z0) = a0. Therefore f has a zero
at z0 if and only if a0 = 0, in which case

f(z) = a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · · .

Now, in the real setting, for a function like f(x) = x2 we say that f has a “double zero”
at x = 0, since there are in some sense two factors which both vanish at 0. This makes
statements like the fundamental theorem of algebra work: “every polynomial of degree d has
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exactly d zeros in C” is only true if we count multiple zeros, otherwise e.g. f(z) = z2 would
be a counterexample, having only one zero.

We make this definition precise here: we say that f has a double zero at z0, or a zero of
order 2, if a0 = a1 = 0, i.e.

f(z) = a2(z − z0)
2 + a3(z − z0)

3 + a4(z − z0)
4 + · · · .

More generally, we say that f has a zero of order n at z0 if a0 = a1 = · · · = an−1 = 0, so that

f(z) = an(z − z0)
n + an+1(z − z0)

n+1 + · · · .

For n = 0, this is just f(z) = a0 + a1(z − z0) + · · · , so we sometimes refer to a point z0 at
which f(z0) ̸= 0 as a “zero of order 0.” For n = 1, we sometimes call a zero of order 1 a
“simple zero.”

All this was special to the point z0 at which we took our Taylor expansion. However,
note that we can take our expansion about any point z0 at which f is analytic; and the
coefficients an of the expansion at that point are given by 1

n!
f (n)(z0). Therefore we make the

following definition: if f : D → C is analytic on D, for every z0 ∈ D we say that f has a
zero of order n at z0 if f (k)(z0) = 0 for 0 ≤ k ≤ n − 1. By the expansion above, if f has a
zero of order n at z0, then we can write

f(z) = (z − z0)
nh(z)

for some function h which is analytic at z0 with h(z0) ̸= 0.
For example, consider f(z) = sin z, which is analytic on all of C. Take z0 = π. We have

f(π) = 0, f ′(π) = cosπ = −1, f ′′(π) = − sin π = 0, and f ′′′(π) = − cos π = 1, after which
the derivatives repeat, so the Taylor expansion at π is given by

sin z = −(z − π) +
1

6
(z − π)3 − 1

120
(z − π)5 + · · · .

In particular, sin z has a zero of order 1 at π. Meanwhile g(z) = sin z+z−π = 1
6
(z−π)3−· · ·

has a zero of order 3 at π.
If f has a zero of order n at z0 and g has a zero of order m at z0, then fg has a zero of

order n+m. Indeed, write

f(z) = (z − z0)
nh(z), g(z) = (z − z0)

mj(z);

then
f(z)g(z) = (z − z0)

n+mh(z)j(z),

and h(z)j(z) is analytic and nonzero at z0 since each factor is.
We can understand the case at infinity discussed above, too: if f is analytic at infinity,

we say it has a zero of order n at infinity if g(w) = f(1/w) has a zero of order n at 0, or
equivalently if the series expansion at infinity is of the form

f(z) =
an
zn

+
an+1

zn+1
+ · · · = 1

zn

(
an +

an+1

z
+ · · ·

)
,

3



i.e. if f(z) = 1
zn
h(z) where h is analytic at infinity and h(∞) ̸= 0.

For example, consider f(z) = 1
z2+1

. We have g(w) = f(1/w) = 1
w−2+1

= w2

1+w2 , which has
a double zero at w = 0: its power expansion is

w2 − w4 + w6 − w8 + · · · =
∞∑
n=1

(−1)n−1w2n.

Therefore f has a double zero at infinity. Its series expansion at infinity is

z−2 − z−4 + z−6 − · · · = 1

z2

(
1− 1

z2
+

1

z4
− · · ·

)
.

For any set S ⊂ C, we say that a point z0 ∈ S is isolated if there exists some r > 0 such
that for every z0 ̸= z ∈ S, |z − z0| ≥ r. Thus for example in an interval [a, b] ⊂ R ⊂ C, no
point is isolated, while in any finite collection of points every point is isolated.

Theorem. If D ⊂ C is a domain, f : D → C is an analytic function, and S = {z ∈ D :
f(z) = 0}, then either f(z) = 0 for all z ∈ D (i.e. S = D) or every point in S is isolated.

Proof. First, assume that every z0 ∈ S has finite order, so there exists some positive integer
n such that f(z) = (z − z0)

nh(z) with h(z) analytic on some disk around z0 with h(z0) ̸= 0.
Since h is analytic it is continuous, so if we pick z sufficiently close to z0 then h(z) must also
be nonzero, and so f(z) = (z − z0)

nh(z) is nonzero for z sufficiently close to z0. Therefore
z0 is isolated in S, since every point within a certain radius of z0 is not in S.

It remains to show that every zero z0 has finite order, equivalently that at least one of the
derivatives f (n)(z0) is nonzero. Let U ⊂ D be the subset of points z0 at which f (n)(z0) = 0
for all n, and assume it is nonempty, with z0 ∈ U . Then on a disk of some radius centered at
z0, f is equal to its Taylor expansion around z0, which is 0 + 0 + · · · = 0, so f is identically
zero in a neighborhood of z0, hence every point in this disk is in U . Therefore U is an open
set: it contains a disk around every point it contains.

On the other hand, if z0 ̸∈ U , so some higher derivative is nonzero, then by the argument
above we can find a sufficiently small disk around z0 where the function is nonzero, so the
disk around z0 is also not contained in U . Hence D \ U is also open. Since D is connected,
the only way this is possible is if U is empty (i.e. every zero is of finite order, showing as
above that every zero is isolated) or if U = D (in which case f = 0 on D).

As a corollary, we deduce the following.

Corollary. Let D be a domain and f, g : D → C analytic functions on D. If S ⊂ D is a set
with a non-isolated point and f(z) = g(z) for z ∈ S, then f = g on D.

The proof is by applying the above theorem to f − g.
An important case of the above uniqueness principle is when D contains R, or some

interval in R, on which f and g agree. For example, consider f(z) = (sin z)2 + (cos z)2. We
know that if z ∈ R, then f(z) = 1. Taking g(z) = 1, observe that R contains non-isolated
points (in fact all its points are non-isolated), hence since f = g on R we must have f = g
on all of C, i.e. the functional equation sin2 z + cos2 z = 1 extends to C.

This can be generalized by the following permanence principle for functional equations:
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Proposition. Let D ⊂ C be a domain, S ⊂ D a subset with a non-isolated point, and
F (z, w) a function on z, w ∈ D such that for each fixed z0, F (z0, w) is an analytic function
of w, and likewise for each fixed w0, F (z, w0) is an analytic function of z. If F (z, w) = 0
for z, w ∈ S, then F (z, w) = 0 for all z, w ∈ D.

Indeed, fixing z0 ∈ S, we have an analytic function w 7→ F (z0, w) whose restriction to S
is zero, so it must be zero on all of D by the above. Therefore F (z, w) = 0 for z ∈ S and
w ∈ D; fixing w0 ∈ D, F (z, w0) is then an analytic function on D whose restriction to z ∈ S
is zero, so it must be zero for all z ∈ D as well.

As an application, we can prove the relation ez+w = ezew, which previously we saw by
hand. Recall we mentioned that one approach to the class would be to introduce the complex
exponential by its Taylor series and then prove it has the usual properties; this is the key
property we’d want to prove. Taking F (z, w) = ez+w − ezew on z, w ∈ C, we know that
F (z, w) = 0 for z, w ∈ R; so it must in fact vanish everywhere, i.e. ez+w = ezew for all
z, w ∈ C.
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