Lecture 17: series expansions at infinity and zeros

Complex analysis, lecture 4
October 22, 2025

1. POWER EXPANSIONS AT INFINITY

We return to the perspective of the Riemann sphere, the complex numbers plus a point co.
We'’ve seen before that thinking of this extension makes some statements nicer. Today, we
want to unify this perspective with our new tools for studying analytic functions.

If g is a function defined on some disk D centered at 0, we define f(z) = g(1/z), which
will then be defined for |z| sufficiently large (equivalently |1/z| sufficiently small), and we
say that f is analytic at infinity if ¢ is analytic at 0. More broadly, we refer to a domain
D C C as a “neighborhood of oo” if for R large enough, |z| > R implies that z € D. Note
that this is equivalent to the set {z : 1 € D} containing {z : 2| < 1/R} \ {0}, i.e. being
a (punctured) neighborhood of 0. Given a function f on D, we say it is analytic at oo if
g(z) = f(1/z) is analytic at 0.

It is often useful to make a change of variables: set w = %, so that studying what happens
near z = oo is equivalent to studying what happens near w = 0, with which we are more
familiar. We will sometimes write f(co) = lim, ;o f(2) = lim,_0 g(w) = ¢(0), when the
limits exist.

For example, consider f(z) = -2

—+7, defined on |2] > 1 (or more generally on C\ {-1}).

Then g(w) = f(1/w) = 1/11{)111 = 1J+w is analytic at w = 0 (in fact, at all w # —1), so f is

analytic at co. We have

z

Jm f(2) = Jim = 1= limg(w) = g(0).

On the other hand, a function like f(z) = e*, while well-behaved everywhere in C, is
not analytic at co. Indeed, g(w) = f(1/w) = e'/* is not analytic at 0. More generally, a
necessary—but not sufficient—condition for f to be analytic at infinity is that the limit

lim f(z) = lim g(w)

Z—+00 w—0
exist, which it does not in this case. (We might call this condition being continuous at
infinity, though this by itself won’t often come up.)

(Note in the above that the limit must exist as a complex number; the limit being infinite
does not suffice. However, there does exist a notion of analytic functions CU{co} — CU{oo0}
for which the limit being infinite, properly defined, would suffice, which we may come back
to later.)

If g(w) is analytic at 0, we have seen that for |z| < R for some radius 0 < R < 400, we
can write

g(w) :Zanw”:a0+a1w+a2w2+---
n=0



where a,, = %g(”)(O). Rewriting everything in terms of f and z, this gives us the expansion
- a a
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which we refer to as the series or Taylor expansion of f at infinity.

This is perhaps very strange-looking, but should be expected from the terminology: we
have argued before that if f is analytic at a point, then f admits a Taylor expansion centered
at that point; this is the extension of this principle to oc.

What about the convergence of this series? We can study its convergence in terms of
that of g(w): the series for g(w) should converge absolutely to an analytic function of w for
lw| < R for some R, so the series for f should converge for |z| > +. If R = 0, then the
series converges nowhere; if R = 400, i.e. ¢ is entire, then the series for f also converges
everywhere except at z = 0 (where it is undefined, though f may extend to this point).

Let’s return to the example above. If f(z) = %, we saw g(w) = T’ which has power
expansion given by the geometric series in —w,
oo
g(w) =Y (=1)"w"
n=0
for |w| < 1. Therefore
flz) =) (=)=
n=0

for |z| > 1. Indeed, the series on the right can be viewed as the geometric series in —1/z,
and we can check explicitly that this recovers f(z).

2. ZEROS OF ANALYTIC FUNCTIONS

Let .
Zan z—20)" = ag+ay(z — 2) +ax(z—2)* 4.

n=0
We want to study the zeros of f.
In general terms, these could be anything. There is one point which is natural to study,
though: at z = zp, all higher terms vanish and we find f(zy) = ag. Therefore f has a zero
at zg if and only if ag = 0, in which case

f(2) = ai(z — 20) + as(z — 20)? +as(z — z)> +--- .

Now, in the real setting, for a function like f(z) = x? we say that f has a “double zero”
at x = 0, since there are in some sense two factors which both vanish at 0. This makes
statements like the fundamental theorem of algebra work: “every polynomial of degree d has



2 would

exactly d zeros in C” is only true if we count multiple zeros, otherwise e.g. f(z) = z
be a counterexample, having only one zero.
We make this definition precise here: we say that f has a double zero at zy, or a zero of

order 2, if ag = a; =0, i.e.
f(2) = as(z — 20)* + as(z — 20)° + as(z — 20)* + - --
More generally, we say that f has a zero of order n at zy if ag =a; = --- = a,_1 = 0, so that
f(2) = an(z — 20)" + Qpyr(z — 2)" T 4+ -+ .

For n = 0, this is just f(z) = ag + ai1(z — 29) + - - -, so we sometimes refer to a point zy at
which f(z0) # 0 as a “zero of order 0.” For n = 1, we sometimes call a zero of order 1 a
“simple zero.”

All this was special to the point 2y at which we took our Taylor expansion. However,
note that we can take our expansion about any point 2z, at which f is analytic; and the
coefficients a,, of the expansion at that point are given by % f™(z). Therefore we make the
following definition: if f : D — C is analytic on D, for every zy € D we say that f has a
zero of order n at zy if f*)(zy) = 0 for 0 < k < n — 1. By the expansion above, if f has a
zero of order n at zy, then we can write

f(2) = (2 = 20)"h(2)

for some function h which is analytic at zy with h(z) # 0.

For example, consider f(z) = sin z, which is analytic on all of C. Take z; = m. We have
f(m) =0, f'(m) = cosm = =1, f’"(7r) = —sinm = 0, and f"”(7w) = —cosm = 1, after which
the derivatives repeat, so the Taylor expansion at 7 is given by

1 1

Sinz:—(Z_W)—|-6(z_7r)3_m<z_ﬂ-)5+..._

In particular, sin z has a zero of order 1 at . Meanwhile g(z) = sinz+z—m = ¢(z—m)3—- -
has a zero of order 3 at 7.

If f has a zero of order n at zp and g has a zero of order m at zy, then fg has a zero of
order n + m. Indeed, write

f(2) = (z=2)"Mz),  g(2) = (z = 20)"3(2);

then
f(2)g(2) = (= — 20)"""h(2)3 (),
and h(z)j(z) is analytic and nonzero at zy since each factor is.
We can understand the case at infinity discussed above, too: if f is analytic at infinity,

we say it has a zero of order n at infinity if g(w) = f(1/w) has a zero of order n at 0, or
equivalently if the series expansion at infinity is of the form
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i.e. if f(z) = & h(z) where h is analytic at infinity and h(oco) # 0.
For example, consider f(z) = Z5. We have g(w) = f(1/w) = —— = lf:%, which has
a double zero at w = 0: its power expansion is

w? —wt +w —wd = Z(—l)”_lw%.
n=1

Therefore f has a double zero at infinity. Its series expansion at infinity is

1 11
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For any set S C C, we say that a point 2y € S is isolated if there exists some r > 0 such
that for every zg # z € S, |z — 29| > r. Thus for example in an interval [a,b] C R C C, no
point is isolated, while in any finite collection of points every point is isolated.

Theorem. If D C C is a domain, f : D — C is an analytic function, and S = {z € D :
f(z) =0}, then either f(z) =0 for all z € D (i.e. S = D) or every point in S is isolated.

Proof. First, assume that every zy € S has finite order, so there exists some positive integer
n such that f(z) = (z — 29)"h(z) with h(z) analytic on some disk around zy with h(zy) # 0.
Since h is analytic it is continuous, so if we pick z sufficiently close to zo then h(z) must also
be nonzero, and so f(z) = (z — z)"h(z) is nonzero for z sufficiently close to zy. Therefore
2z is isolated in 9, since every point within a certain radius of z is not in S.

It remains to show that every zero 2, has finite order, equivalently that at least one of the
derivatives f(™(z) is nonzero. Let U C D be the subset of points zy at which f™(z) = 0
for all n, and assume it is nonempty, with zy € U. Then on a disk of some radius centered at
zo, [ is equal to its Taylor expansion around zg, which is 0 + 0+ --- =0, so f is identically
zero in a neighborhood of zy, hence every point in this disk is in U. Therefore U is an open
set: it contains a disk around every point it contains.

On the other hand, if zy &€ U, so some higher derivative is nonzero, then by the argument
above we can find a sufficiently small disk around z, where the function is nonzero, so the
disk around zj is also not contained in U. Hence D \ U is also open. Since D is connected,
the only way this is possible is if U is empty (i.e. every zero is of finite order, showing as
above that every zero is isolated) or if U = D (in which case f =0 on D). O

As a corollary, we deduce the following.

Corollary. Let D be a domain and f,g: D — C analytic functions on D. If S C D is a set
with a non-isolated point and f(z) = g(z) for z € S, then f =g on D.

The proof is by applying the above theorem to f — g.

An important case of the above uniqueness principle is when D contains R, or some
interval in R, on which f and g agree. For example, consider f(z) = (sin 2)? + (cos z)%. We
know that if z € R, then f(z) = 1. Taking g(z) = 1, observe that R contains non-isolated
points (in fact all its points are non-isolated), hence since f = g on R we must have f = g
on all of C, i.e. the functional equation sin? z + cos? z = 1 extends to C.

This can be generalized by the following permanence principle for functional equations:
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Proposition. Let D C C be a domain, S C D a subset with a non-isolated point, and
F(z,w) a function on z,w € D such that for each fixed zy, F(zy,w) is an analytic function
of w, and likewise for each fized wy, F(z,wq) is an analytic function of z. If F(z,w) =0
for z,w € S, then F(z,w) =0 for all zyw € D.

Indeed, fixing zy € S, we have an analytic function w — F(2p,w) whose restriction to S
is zero, so it must be zero on all of D by the above. Therefore F(z,w) = 0 for z € S and
w € D; fixing wy € D, F(z,wp) is then an analytic function on D whose restriction to z € S
is zero, so it must be zero for all z € D as well.

As an application, we can prove the relation e*t" = e?¢", which previously we saw by
hand. Recall we mentioned that one approach to the class would be to introduce the complex
exponential by its Taylor series and then prove it has the usual properties; this is the key
property we’d want to prove. Taking F(z,w) = e*T* — e*¢®” on z,w € C, we know that
F(z,w) = 0 for z,w € R; so it must in fact vanish everywhere, i.e. e*™ = e*e¥ for all
z,w € C.
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