Lecture 16: Taylor series

Complex analysis, lecture 4
October 17, 2025

Last time, we studied power series
oo
f(2) =) an(z—20)"
n=0

for sequences a,,, and saw that within a disk of some radius (possibly zero or infinite) centered
at 2p, this series converges absolutely to an analytic function of z. Our first goal today is to
prove the converse, justifying our terminology for analytic functions.

Theorem. Suppose that [ is an analytic function on D = {z : |z — z9| < R} for some R.
Then:

(a) for all |z — 2| < R,
f(2) =) anlz = 20)",

where {
— — f(n)
an — n'f (20)7
and the power series has radius of convergence greater than or equal to R.

(b) For any fized 0 <r < R and n > 0,

1
a, = — % —f(Z) dz.
2m1 |z—zo|=r (Z - 20>n+1
(¢) For any fired 0 <r < R andn >0, if |f(2)| < M for all |z — zo| = r, then
la,| < —.
/,an

Proof. The idea is to look at Cauchy’s formula: for |z — 29| < r < R,

f)= 5 Il

27

dz

lw—zo|=r W — %

since |w — 2| < r is a domain containing z, and write

wl_z‘<w_zo>1_<z—zo>_wizo'1—<z—zol>/<w—20> _wi%i@:@

n=0



ﬁ = @ < 1). This can be rewritten as

2 (z—2)"
Z (w _ Zo)n—i-l'

n=0

(since |w — z| =r # 0 and

Plugging this in to Cauchy’s formula, we get

1 = (z—2)"
flz) =— flw ——dz.
( ) 2m |z—z0|=r ( ) TLZ:% (w - ZO)n+1
By uniform convergence within the disk of radius r < R, we can exchange the sum (viewed
as a limit of partial sums) and the integral, so this is

=0 Jlz—z0l=r =

If we label the quantity in parentheses as a,, as in (b), by Cauchy’s integral formula for
derivatives this agrees with

ap = Hf(n)(zi))

as in (a), so we have proven

f(z) =Y an(z = z0)"
n=0
for both descriptions. This converges for |z—z| < r for any r < R, hence for any |z—zy| < R,
so its radius of convergence is at least R. Finally (c) follows from the Cauchy estimates. [

Thus we have shown that analytic functions are equal to their Taylor expansions, at
least on some sufficiently small disk. An immediate consequence is the following uniqueness
statement:

Corollary. Let f, g be analytic functions on {z : |z — z| < r} such that f(z) = g™ (2)
for alln > 0. Then f(z) = g(z) for all |z — z| <.

Indeed, both functions are equal to their Taylor series on this region, which are equal by
assumption.
We can reframe this slightly, which will be useful later on:

Corollary. Let 0 < r < R be real numbers, and f, g analytic functions on D = {z : |z— 2| <
R} such that if |z — zo| <1, then f(2) = g(z). Then f(z) = g(z) for all |z — z| < R.

Indeed, by assumption f = g on the smaller disk, so their derivatives agree there, and in
particular f(™(z,) = g™ (2) for all n; so since f and g are equal to their Taylor series on
D, they must be equal there by the previous corollary.



We now turn to some examples. Consider the function f(z) = e*. Since f(™(z) = e* for
all n and f is entire, we have for all z € C

Note that although this is a direct consequence of the above statements, this is actually
rather remarkable: in order to talk about the complex exponential, we defined its extension
to complex numbers in an apparently arbitrary way; and although we saw some reasons to
believe this was the right definition, we can now prove that this is the only possible one: the
only analytic function f such that f'(z) = f(z) and f(0) = 1, a differential equation which
should have unique solution e, is given by this Taylor series. An alternate approach would
have been to define this to be the complex exponential, and deduce all its properties from
there.

As an example of this approach, we deduce Euler’s formula. Recall the Taylor series for
sine and cosine (by the same argument, the same as their real analogues, and convergent on
the whole complex plane since they are entire):

o0

cos(z):X% (2n)!Z2 :1—5224_%51_...7
' e D Ly, 1 5
sin(z) —nz; (2n+1)!z =z g2 + 1507
It follows that
; Qi : 1 2 1 3 1 4 1 . 5
cos(z) +isin(z) =141z — =2 — —iz° + —2" + ——iz° — - -~

2 6 24 120

The special case with which we're familiar is when z = 6 is real, giving points e? = cos +
1sin @ on the unit circle, but one could also take z complex, recovering our formulas for sine
and cosine of complex numbers, which agree with the power series above.

Another more abstract corollary of our result is the following reinterpretation of the
radius of convergence:

Proposition. If f(z) is analytic at zo with Taylor series

F(2) =) anlz = 20)",

this power series has radius of convergence given by the largest real number R (or +00) such
that f extends to an analytic function on {z: |z — z| < R}.
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Note that by the corollary above, such an extension is unique, so this really is just a
property of f with no need to worry about the choice of an extension.

For example, the geometric series Y~ 2" is the Taylor series for f(z) = i centered at
zo = 0. This function has a pole at z = 1, so the largest disk it extends to is radius 1, hence
it has radius of convergence 1.

A more subtle example is f(z) = ﬁ In the real setting, this is well-defined and analytic

on all of R; at z = 0, it has the power expansion

1 [eS)
+1:Z(—l)n22n:1—22+Z4—26+"‘,
n=0

52
given by taking the geometric series in —z?. However, this only converges for |z| < 1,
somewhat inexplicably from what we can see over R: there are no singularities to worry
about.

In the complex setting, however, we can see what’s happening more clearly: here (by
the fundamental theorem of algebra) ZQ—ﬁrl does have singularities, at z = £i. These are at
distance 1 from the origin, so the Taylor series can converge only within the disk of radius
1. This is an instance of the following principle, which we will see more of in the future:
to understand analytic properties of real functions of a real variable, especially those which
extend to analytic functions of a complex variable, it is often useful to pass into the complex
plane even when complex numbers don’t a priori appear.

Another example of interest is the case of removable singularities: consider f(z) = Zzi_ll.
Near z = 0, this is the same thing as z — 1; but at z = —1 it is undefined. Nevertheless,
studying the Taylor series at z = 0, we find that it is —1 + z, a finite polynomial since f is
here, which necessarily converges everywhere. Indeed, f extends (uniquely) to an analytic
function on all of C, even though a priori it isn’t defined at z = —1, with extension z — 1, so
the proposition implies that the radius of convergence should be infinite.

Today’s theorem on Taylor series is the key property of power series (and, arguably, of
analytic functions); next week we’ll study some complements such as power expansions at
infinity, zeros of analytic functions, and analytic continuation.




