Lecture 14: series and convergence

Complex analysis, lecture 4
October 8, 2025

1. INFINITE SERIES

Our goal for today will be to go over some facts about infinite series and sequences of
functions. Just like with our review of integration last unit, much of this will be familiar
from calculus or real analysis, but we’ll focus on aspects that will be relevant in the complex
setting, and see some new properties. Most of the behavior really unique to the complex
setting will wait until next week however.

For a sequence ag,ay,as,... (say of complex numbers) and n > 0, we can define the

partial sum
n
Sn = Z Qg
k=0

We define the infinite series .
Zak = lim S,
n—oo
k=0

so that the series converges if (and only if) the limit of the partial sums does.

Since it is often difficult to give a precise formula for the S, it is useful to have criteria
for when a series converges or diverges. One such test is as follows: if ZZOZO ar = lim, e Sy,
converges, then writing a,, = 5, — S,,_1 for n > 1 we have

lim a, = lim (S, — S,_1) =0,
n—oo n—oo
so conversely if lim,,_,o @, # 0 then ), ) must diverge.
This is a rather weak condition: there are many series whose terms tend to 0 but which
still do not converge. Consider for example

WK
w‘IH

e
Il
—

The partial sums

3

| =

=
Il
—

are lower bounded by
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Since the right-hand side tends to infinity, the left-hand side cannot be bounded, so the
series diverges.



We therefore need a new, more sensitive test. Suppose {a,} is a sequence of nonnegative
real numbers, so S,, = ZZ:O ay is nondecreasing: S, 1 = S, + an+1 > S,. A nondecreasing
sequence of real numbers converges if and only if it’s bounded above, so >~ a) converges
if and only if the partial sums are bounded above.

In particular, if {b,} is another sequence of nonnegative real numbers such that 0 <
a, < b, for every n and ZZO:() b, converges, that means that the partial sums ZZ:O b, are
bounded, so

are also bounded, hence ) 77 ja; converges. This is the comparison test, which we restate
for emphasis:

Proposition (Comparison test). If 0 < a,, < b, are sequences of real numbers and
S
k=0

converges, then so does
o

S an

k=0

Taking the contrapositive, this means that if 0 < a,, < b, and Y., ax diverges, then so
does > 7% bk
In order to make use of this test, we need to have some series which we know converge
or diverge. We have one example of a divergent series above. An example of a convergent
series is given by the geometric series
k=0

for |z| < 1. Indeed, it is a standard algebraic fact that

1— ZnJrl

n

g =
1—=2

k=0

for z # 1, and if |z| < 1 then lim,_, 2" = 0 so the series converges to

d 1
;zk:1—z'

This is a very important series which we will see frequently.

There are of course many other convergence tests which I won’t go over now; these may
come up, and you will be expected to know anything that would typically show up in a
calculus class, but they will not be a focus.

Another useful fact, which starts to exhibit some of the complex behavior, is absolute
convergence:



Proposition. Let {a,} be a sequence of complex numbers. If

o0
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converges, then so does

o0
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This is a standard calculus result for real sequences, but notice that the absolute value
in the complex setting is a little more complicated so we need to be a little careful.

and

Proof. 1t suffices to prove that the sums of Re(a,) and Im(a,) converge. The idea is to
turn these into sequences of positive real numbers and use the comparison test. The key
observation is |Re(z)| < |z], so 0 < Re(z) + |2| < 2|z|. For z = ay, this tells us that on the

one hand
n

> (Re(ax) + |ax|)

k=0

is on the one hand a sum of nonnegative real terms and on the other hand is upper bounded

by
QZ |a7€|7
k=0

which converges by assumption. Therefore

o0

> (Re(an) + Jau])

n=0

converges. Subtracting
o0

D laa.

n=0
which converges by assumption, we find that >~  Re(a,) is the difference of two convergent
series and so converges.
A similar argument works for Im(a,). Finally the inequality amounts to the triangle
inequality. O

Under the conditions of the hypothesis, we say that the series converges absolutely, so
we can rephrase this as the statement that if a series converges absolutely, then it converges.



As an application, we come back to the geometric series, which tells us that

1 = > 1
— n n
\1_2 = | S =
n=0 n=0
A consequence is that
1 - k - k 1 - k Elkas
- = = [t <
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whenever |z] < 1.

2. UNIFORM CONVERGENCE

When talking about sequences of real or complex numbers, convergence is a well-defined
notion. For series, we now have two notions of convergence, the usual notion and absolute
convergence. Given a sequence of functions {f,}, we have to be more careful.

The first notion of convergence is perhaps the most obvious one: if F is some set (typically
a domain in practice, but not necessarily) and f, : F — C are functions, say that the
sequence { f,,} converges pointwise if for every z € E, the sequence {f,(z)} converges. If so,
we get a new function f: E — C given by

f(z) = lim f,(2).
n—oo
However, this notion of convergence is not totally well-behaved with respect to properties
of functions. For example, it is possible to find sequences of continuous functions which
converge pointwise but whose limit is not continuous. For example, if £ = [0, 1] and f,,(z) =
x™, each f, is continuous, and for any 0 < x < 1 the limit lim,, .., 2™ exists; but the limiting

function is
0 z<1
f(x)_{1 r=1"

which is discontinuous at 1.

In particular, we’ll want to be able to interchange limits of sequences of functions with
constructions like integrals and derivatives; but if these limits don’t even preserve continuity
then we cannot hope to do this (e.g. the derivatives of each f,(z) = z™ are all defined,
but the derivative of f is not (at x = 1), so one cannot hope to write it as the limit of the
derivatives). So we need a stronger notion of convergence, designed specifically for functions,
to replace pointwise convergence. This is given by uniform convergence.

We say that {f,} converges uniformly if there exists some function f : F — C and a
sequence of positive real numbers {¢,} converging to 0 such that for every z € E we have

[fn(2) = F(2)] < én.



In particular, the bound ¢, depends on n, but not on z; this is what makes this “uniform.”
We think of €, as measuring the maximum of the difference between f,, and f, the “worst
case” of the approximation.

In the case above, for x = 1 — ¢ we have |f,(x) — f(z)| = |1 —=§)" =0 = |1 —§ +
nd? —- .-+ (—1)""| which as § — 0 approaches 1, so we cannot choose such a sequence {e, }
approaching 0. In fact we would be forced to take €, > 1 for all n; the worst case bound is
1.

This is supposed to explain the failure of continuity of f(z). Indeed, we have the following
more general theorem (whose proof is standard in real analysis and omitted here):

Theorem. If {f,} is a sequence of continuous functions E — C converging uniformly to a
function f . E — C, then f is also continuous.

We’ll see next week that uniform convergence also guarantees us the other good behavior
we're looking for, e.g. with respect to derivatives and integrals. This established, we’ll
be able to talk more meaningfully about the convergence of series of functions and their
properties, which is the main focus of this section.
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