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Last time: the Cauchy estimate

We use Cauchy’s formula for higher derivatives to show that if f is
analytic on {z : |z − z0| ≤ r} and |f (z)| ≤ M for |z − z0| = r , then

|f (n)(z0)| ≤
n!

rn
M.

This has the following very nice application.
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Liouville’s theorem

Say a function is entire if it is analytic on the whole complex
plane.

Recall also that a function f is bounded if there exists a real
number M such that for any z in the domain of f , |f (z)| ≤ M.

Theorem (Liouville’s theorem)

Any bounded entire function is constant.

e.g. sin z and cos z are analytic everywhere as complex
functions, hence not bounded!

in particular the familiar bounds | sin z | ≤ 1, | cos z | ≤ 1 over
R are not true over C.
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Fundamental theorem of algebra

Another proof of the fundamental theorem of algebra: if P(z) has
no roots in C, then 1

P(z) is entire. Either

degP = 0, so P(z) and 1
P(z) are constant;

or degP ≥ 1, so lim|z|→∞ |P(z)| = ∞, so lim|z|→∞
1

|P(z)| = 0,

so 1
|P(z)| is bounded.

Either way 1
P(z) is bounded, so by Liouville’s theorem it is

constant. Hence if P has no zeros in C it is constant, i.e. any
non-constant polynomial has a zero in C.
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Proof of Liouville’s theorem

If f is bounded (|f (z)| ≤ M for all z) and entire, for any r > |z | by
the Cauchy estimates for n = 1

|f ′(z)| ≤ 1

r
·M.

Taking r → ∞, it follows that f ′(z) = 0 for all z , so f is constant.
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Morera’s theorem

Recall: if f (z) is analytic on a domain D, then f (z) dz is closed on
D. (So

∫
∂D f (z) dz =

∫
D 0 dz = 0, Cauchy’s theorem.)

Morera’s theorem: loosely speaking, the converse holds. More
precisely:

Theorem (Morera’s theorem, version 1)

Let f be a continuous function on a domain D. If for any
sub-domain D ′ ⊂ D we have∫

∂D′
f (z) dz = 0,

then f is analytic on D.
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Morera’s theorem

Actually, we just need to check the case when D ′ is a rectangle of
a certain type:

Theorem (Morera’s theorem, version 2)

Let f be a continuous function on a domain D. If for any rectangle
R ⊂ D with sides parallel to the coordinate axes we have∫

∂R
f (z) dz = 0,

then f is analytic on D.

D

R
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Proof of Morera’s theorem

It suffices to prove version 2. Actually we can also assume D is a
disk, by picking a small disk around any point in D and using
Morera’s theorem for disks to show that f is analytic there, so
assume D is a disk centered at z0.

In this case exact = closed, so we expect f = F ′ for

F (z) =

∫ z

z0

f (w) dw

where the path is horizontal and then vertical.

z0

z
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Proof of Morera’s theorem

Fix a small complex number h with |h| < ϵ. Then

F (z + h)− F (z) =

∫ z+h

z
f (w) dw

where the path is from z to z0 (reverse of the above) to z + h (as
above) or equivalently moving the line:

z0

z z + h

z0

z z + h

Here we are using the hypothesis that the integral over the
boundary of a rectangle is 0.
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Proof of Morera’s theorem

Now ∫ z+h

z
f (w) dw =

∫ z+h

z
f (z) + (f (w)− f (z)) dw

= hf (z) +

∫ z+h

z
(f (w)− f (z)) dw .

Since f is continuous, for any δ > 0 we have |f (w)− f (z)| < δ for
ϵ small enough, and the length of the path is ≤ 2|h|, so by the ML
bound:

|F (z + h)− F (z)− hf (z)| < 2δ|h|.
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Proof of Morera’s theorem

Divide by h: ∣∣∣∣F (z + h)− F (z)

h
− f (z)

∣∣∣∣ < 2δ

so since we can take δ as small as we like as h → 0 this is 0.

Therefore F is analytic, so so is F ′ = f (by Cauchy’s formula for
derivatives!).
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Goursat’s theorem

An analytic function f on a domain D:

1 has to be complex differentiable on D,

2 and f ′ has to be continuous on D.

We claimed that (2) is redundant. We can now justify this:

Theorem (Goursat’s theorem)

If f : D → C is a function such that

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

exists for every z0 ∈ D, then f is analytic (i.e. f ′ is also
continuous).
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Proof of Goursat’s theorem

Note that f is automatically continuous, or else the limit won’t
exist, so we can try to use Morera’s theorem.

Let R ⊂ D be a rectangle. We want to show∫
∂R

f (z) dz = 0.
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Proof of Goursat’s theorem

Divide R into four equal rectangles R1,R2,R3,R4:

Note∫
∂R
f (z) dz =

∫
∂R1

f (z) dz +

∫
∂R2

f (z) dz +

∫
∂R3

f (z) dz +

∫
∂R4

f (z) dz

so one of the Ri satisfies∣∣∣∣∫
∂Ri

f (z) dz

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂R

f (z) dz

∣∣∣∣ .
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Proof of Goursat’s theorem

Relabel this Ri to R1 and repeat the process:

One of the inner rectangles (call it R2) must satisfy∣∣∣∣∫
∂R2

f (z) dz

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂R1

f (z) dz

∣∣∣∣ ≥ 1

42

∣∣∣∣∫
∂R

f (z) dz

∣∣∣∣ .
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Proof of Goursat’s theorem

Continue indefinitely:

We get a sequence of R ⊃ R1 ⊃ R2 ⊃ · · · with∣∣∣∣∫
∂Rn

f (z) dz

∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
∂R

f (z) dz

∣∣∣∣ .
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Proof of Goursat’s theorem

Since the diameters of the Rn are decreasing to 0 and they all
include each other, they are converging towards some point z0.

Since f is differentiable at z0, for z ∈ Rn∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ < ϵn

for ϵn → 0 as n → ∞.

Let L be the length of ∂R, so the length of ∂Rn is L/2n. Then

|f (z)− f (z0)− f ′(z0)(z − z0)| < ϵn|z − z0| ≤ ϵnL/2
n.
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Proof of Goursat’s theorem

Note f (z0) + f ′(z0)(z − z0) is analytic everywhere, so by Cauchy’s
theorem ∫

∂Rn

(f (z0) + f ′(z0)(z − z0)) dz = 0.

Therefore by the ML bound∣∣∣∣∫
∂Rn

f (z) dz

∣∣∣∣ = ∣∣∣∣∫
∂Rn

(f (z)− f (z0)− f ′(z0)(z − z0)) dz

∣∣∣∣
≤ L

2n
· ϵn ·

L

2n

=
L2

4n
· ϵn.
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Proof of Goursat’s theorem

Therefore: ∣∣∣∣∫
∂R

f (z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Rn

f (z) dz

∣∣∣∣ ≤ L2ϵn

for all n.

Since ϵn → 0 as n → 0, the integral must be 0. So by Morera’s
theorem f is analytic.



Liouville’s theorem Morera’s theorem Goursat’s theorem The operators ∂
∂z

and ∂
∂z

The operators ∂
∂z and ∂

∂z

When working with the Cauchy–Riemann equations, we needed to
talk about the real and imaginary parts u and v of f , and the x
and y partial derivatives. We would rather have something more
complex-looking.

Define operators

∂

∂z
=

1

2

(
∂

∂x
+

∂

∂(iy)

)
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
− ∂

∂(iy)

)
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.
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The operators ∂
∂z and ∂

∂z

If f is analytic,

f ′(z) =
∂f

∂x
=

∂f

∂(iy)
= −i

∂f

∂y

using the Cauchy–Riemann equations. Averaging:

f ′(z) =
1

2
(f ′(z) + f ′(z)) =

1

2

(
∂f

∂x
− i

∂f

∂y

)
=

∂f

∂z
.
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Complex form of Cauchy–Riemann

On the other hand:

0 =
1

2
(f ′(z)− f ′(z)) =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

∂f

∂z
.

So f analytic =⇒ ∂f
∂z = 0.

More generally if f = u + iv ,

∂f

∂z
=

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
.
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Complex form of Cauchy–Riemann

Taking real and imaginary parts: ∂f
∂z = 0 if and only if

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

the Cauchy–Riemann equations.

So an equivalent form is
∂f

∂z
= 0,

sometimes called the complex form of the Cauchy–Riemann
equations.
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Properties

The operators ∂
∂z ,

∂
∂z act like partial derivative operators:

∂

∂z
(af + bg) = a

∂f

∂z
+ b

∂g

∂z
,

∂

∂z
(af + bg) = a

∂f

∂z
+ b

∂g

∂z

for constants a, b, and

∂

∂z
(fg) = f

∂g

∂z
+

∂f

∂z
g ,

∂

∂z
(fg) = f

∂g

∂z
+

∂f

∂z
g .
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Properties

They also satisfy

∂f

∂z
=

∂f

∂z
,

∂f

∂z
=

∂f

∂z
.

So e.g. if f and f are both analytic, then

0 =
∂f

∂z
=

∂f

∂z

and so f is constant.
Next time we’ll make some more serious use of these operators.
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