

## Lecture 12: applications of Cauchy's formula to analyticity

Complex analysis, lecture 4

October 3, 2025

## Last time: the Cauchy estimate

We use Cauchy's formula for higher derivatives to show that if  $f$  is analytic on  $\{z : |z - z_0| \leq r\}$  and  $|f(z)| \leq M$  for  $|z - z_0| = r$ , then

$$|f^{(n)}(z_0)| \leq \frac{n!}{r^n} M.$$

This has the following very nice application.

# Liouville's theorem

- Say a function is entire if it is analytic on the whole complex plane.
- Recall also that a function  $f$  is bounded if there exists a real number  $M$  such that for any  $z$  in the domain of  $f$ ,  $|f(z)| \leq M$ .

## Theorem (Liouville's theorem)

*Any bounded entire function is constant.*

- e.g.  $\sin z$  and  $\cos z$  are analytic everywhere as complex functions, hence not bounded!
- in particular the familiar bounds  $|\sin z| \leq 1$ ,  $|\cos z| \leq 1$  over  $\mathbb{R}$  are not true over  $\mathbb{C}$ .

# Fundamental theorem of algebra

Another proof of the fundamental theorem of algebra: if  $P(z)$  has no roots in  $\mathbb{C}$ , then  $\frac{1}{P(z)}$  is entire. Either

- $\deg P = 0$ , so  $P(z)$  and  $\frac{1}{P(z)}$  are constant;
- or  $\deg P \geq 1$ , so  $\lim_{|z| \rightarrow \infty} |P(z)| = \infty$ , so  $\lim_{|z| \rightarrow \infty} \frac{1}{|P(z)|} = 0$ ,  
so  $\frac{1}{|P(z)|}$  is bounded.

Either way  $\frac{1}{P(z)}$  is bounded, so by Liouville's theorem it is constant. Hence if  $P$  has no zeros in  $\mathbb{C}$  it is constant, i.e. any non-constant polynomial has a zero in  $\mathbb{C}$ .

# Proof of Liouville's theorem

If  $f$  is bounded ( $|f(z)| \leq M$  for all  $z$ ) and entire, for any  $r > |z|$  by the Cauchy estimates for  $n = 1$

$$|f'(z)| \leq \frac{1}{r} \cdot M.$$

Taking  $r \rightarrow \infty$ , it follows that  $f'(z) = 0$  for all  $z$ , so  $f$  is constant.

# Morera's theorem

Recall: if  $f(z)$  is analytic on a domain  $D$ , then  $f(z) dz$  is closed on  $D$ . (So  $\int_{\partial D} f(z) dz = \int_D 0 dz = 0$ , Cauchy's theorem.)

Morera's theorem: loosely speaking, the converse holds. More precisely:

## Theorem (Morera's theorem, version 1)

Let  $f$  be a continuous function on a domain  $D$ . If for any sub-domain  $D' \subset D$  we have

$$\int_{\partial D'} f(z) dz = 0,$$

then  $f$  is analytic on  $D$ .

# Morera's theorem

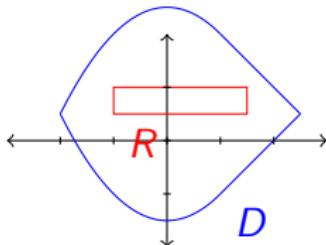
Actually, we just need to check the case when  $D'$  is a rectangle of a certain type:

## Theorem (Morera's theorem, version 2)

*Let  $f$  be a continuous function on a domain  $D$ . If for any rectangle  $R \subset D$  with sides parallel to the coordinate axes we have*

$$\int_{\partial R} f(z) dz = 0,$$

*then  $f$  is analytic on  $D$ .*



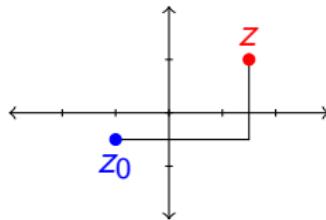
## Proof of Morera's theorem

It suffices to prove version 2. Actually we can also assume  $D$  is a disk, by picking a small disk around any point in  $D$  and using Morera's theorem for disks to show that  $f$  is analytic there, so assume  $D$  is a disk centered at  $z_0$ .

In this case  $\text{exact} = \text{closed}$ , so we expect  $f = F'$  for

$$F(z) = \int_{z_0}^z f(w) dw$$

where the path is horizontal and then vertical.

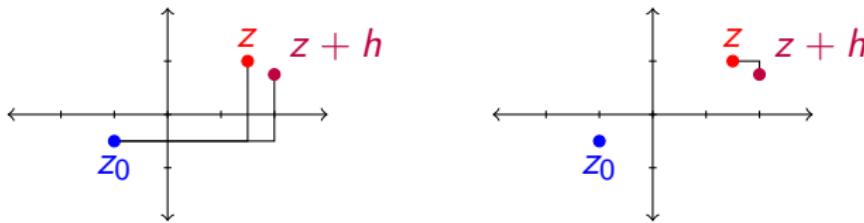


# Proof of Morera's theorem

Fix a small complex number  $h$  with  $|h| < \epsilon$ . Then

$$F(z + h) - F(z) = \int_z^{z+h} f(w) dw$$

where the path is from  $z$  to  $z_0$  (reverse of the above) to  $z + h$  (as above) or equivalently moving the line:



Here we are using the hypothesis that the integral over the boundary of a rectangle is 0.

# Proof of Morera's theorem

Now

$$\begin{aligned}\int_z^{z+h} f(w) dw &= \int_z^{z+h} f(z) + (f(w) - f(z)) dw \\ &= hf(z) + \int_z^{z+h} (f(w) - f(z)) dw.\end{aligned}$$

Since  $f$  is continuous, for any  $\delta > 0$  we have  $|f(w) - f(z)| < \delta$  for  $\epsilon$  small enough, and the length of the path is  $\leq 2|h|$ , so by the ML bound:

$$|F(z + h) - F(z) - hf(z)| < 2\delta|h|.$$

# Proof of Morera's theorem

Divide by  $h$ :

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| < 2\delta$$

so since we can take  $\delta$  as small as we like as  $h \rightarrow 0$  this is 0.

Therefore  $F$  is analytic, so so is  $F' = f$  (by Cauchy's formula for derivatives!).

# Goursat's theorem

An analytic function  $f$  on a domain  $D$ :

- ① has to be complex differentiable on  $D$ ,
- ② and  $f'$  has to be continuous on  $D$ .

We claimed that (2) is redundant. We can now justify this:

## Theorem (Goursat's theorem)

*If  $f : D \rightarrow \mathbb{C}$  is a function such that*

$$f'(z_0) = \lim_{z \rightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

*exists for every  $z_0 \in D$ , then  $f$  is analytic (i.e.  $f'$  is also continuous).*

# Proof of Goursat's theorem

Note that  $f$  is automatically continuous, or else the limit won't exist, so we can try to use Morera's theorem.

Let  $R \subset D$  be a rectangle. We want to show

$$\int_{\partial R} f(z) dz = 0.$$

# Proof of Goursat's theorem

Divide  $R$  into four equal rectangles  $R_1, R_2, R_3, R_4$ :



Note

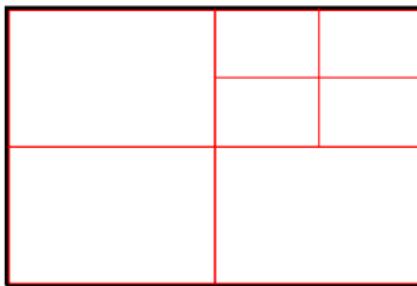
$$\int_{\partial R} f(z) dz = \int_{\partial R_1} f(z) dz + \int_{\partial R_2} f(z) dz + \int_{\partial R_3} f(z) dz + \int_{\partial R_4} f(z) dz$$

so one of the  $R_i$  satisfies

$$\left| \int_{\partial R_i} f(z) dz \right| \geq \frac{1}{4} \left| \int_{\partial R} f(z) dz \right|.$$

# Proof of Goursat's theorem

Relabel this  $R_i$  to  $R^1$  and repeat the process:

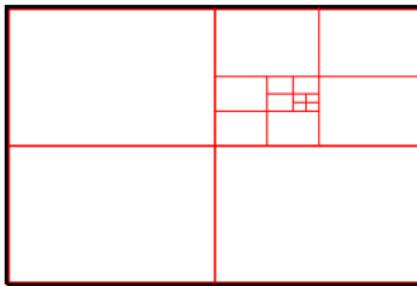


One of the inner rectangles (call it  $R^2$ ) must satisfy

$$\left| \int_{\partial R^2} f(z) dz \right| \geq \frac{1}{4} \left| \int_{\partial R^1} f(z) dz \right| \geq \frac{1}{4^2} \left| \int_{\partial R} f(z) dz \right|.$$

# Proof of Goursat's theorem

Continue indefinitely:



We get a sequence of  $R \supset R^1 \supset R^2 \supset \dots$  with

$$\left| \int_{\partial R^n} f(z) dz \right| \geq \frac{1}{4^n} \left| \int_{\partial R} f(z) dz \right|.$$

# Proof of Goursat's theorem

Since the diameters of the  $R^n$  are decreasing to 0 and they all include each other, they are converging towards some point  $z_0$ .

Since  $f$  is differentiable at  $z_0$ , for  $z \in R^n$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \epsilon_n$$

for  $\epsilon_n \rightarrow 0$  as  $n \rightarrow \infty$ .

Let  $L$  be the length of  $\partial R$ , so the length of  $\partial R^n$  is  $L/2^n$ . Then

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \epsilon_n |z - z_0| \leq \epsilon_n L/2^n.$$

# Proof of Goursat's theorem

Note  $f(z_0) + f'(z_0)(z - z_0)$  is analytic everywhere, so by Cauchy's theorem

$$\int_{\partial R^n} (f(z_0) + f'(z_0)(z - z_0)) dz = 0.$$

Therefore by the ML bound

$$\begin{aligned} \left| \int_{\partial R^n} f(z) dz \right| &= \left| \int_{\partial R^n} (f(z) - f(z_0) - f'(z_0)(z - z_0)) dz \right| \\ &\leq \frac{L}{2^n} \cdot \epsilon_n \cdot \frac{L}{2^n} \\ &= \frac{L^2}{4^n} \cdot \epsilon_n. \end{aligned}$$

# Proof of Goursat's theorem

Therefore:

$$\left| \int_{\partial R} f(z) dz \right| \leq 4^n \left| \int_{\partial R^n} f(z) dz \right| \leq L^2 \epsilon_n$$

for all  $n$ .

Since  $\epsilon_n \rightarrow 0$  as  $n \rightarrow 0$ , the integral must be 0. So by Morera's theorem  $f$  is analytic.

# The operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$

When working with the Cauchy–Riemann equations, we needed to talk about the real and imaginary parts  $u$  and  $v$  of  $f$ , and the  $x$  and  $y$  partial derivatives. We would rather have something more complex-looking.

Define operators

$$\frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} + \frac{\partial}{\partial(iy)} \right) = \frac{1}{2} \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right),$$
$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial(iy)} \right) = \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

The operators  $\frac{\partial}{\partial z}$  and  $\frac{\partial}{\partial \bar{z}}$ 

If  $f$  is analytic,

$$f'(z) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial(iy)} = -i \frac{\partial f}{\partial y}$$

using the Cauchy–Riemann equations. Averaging:

$$f'(z) = \frac{1}{2}(f'(z) + f'(z)) = \frac{1}{2} \left( \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) = \frac{\partial f}{\partial z}.$$

# Complex form of Cauchy–Riemann

On the other hand:

$$0 = \frac{1}{2}(f'(z) - f'(z)) = \frac{1}{2} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = \frac{\partial f}{\partial \bar{z}}.$$

So  $f$  analytic  $\implies \frac{\partial f}{\partial \bar{z}} = 0$ .

More generally if  $f = u + iv$ ,

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left( \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \frac{\partial u}{\partial y} - \frac{\partial v}{\partial y} \right).$$

# Complex form of Cauchy–Riemann

Taking real and imaginary parts:  $\frac{\partial f}{\partial \bar{z}} = 0$  if and only if

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y},$$

the Cauchy–Riemann equations.

So an equivalent form is

$$\frac{\partial f}{\partial \bar{z}} = 0,$$

sometimes called the complex form of the Cauchy–Riemann equations.

# Properties

The operators  $\frac{\partial}{\partial z}$ ,  $\frac{\partial}{\partial \bar{z}}$  act like partial derivative operators:

$$\frac{\partial}{\partial z}(af + bg) = a\frac{\partial f}{\partial z} + b\frac{\partial g}{\partial z}, \quad \frac{\partial}{\partial \bar{z}}(af + bg) = a\frac{\partial f}{\partial \bar{z}} + b\frac{\partial g}{\partial \bar{z}}$$

for constants  $a, b$ , and

$$\frac{\partial}{\partial z}(fg) = f\frac{\partial g}{\partial z} + \frac{\partial f}{\partial z}g, \quad \frac{\partial}{\partial \bar{z}}(fg) = f\frac{\partial g}{\partial \bar{z}} + \frac{\partial f}{\partial \bar{z}}g.$$

# Properties

They also satisfy

$$\overline{\frac{\partial f}{\partial z}} = \frac{\partial \bar{f}}{\partial \bar{z}}, \quad \overline{\frac{\partial \bar{f}}{\partial z}} = \frac{\partial f}{\partial \bar{z}}.$$

So e.g. if  $f$  and  $\bar{f}$  are both analytic, then

$$0 = \frac{\partial \bar{f}}{\partial \bar{z}} = \overline{\frac{\partial f}{\partial z}}$$

and so  $f$  is constant.

Next time we'll make some more serious use of these operators.