Lecture 12: applications of Cauchy’s formula to
analyticity

Complex analysis, lecture 4

October 3, 2025
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Last time: the Cauchy estimate

We use Cauchy's formula for higher derivatives to show that if f is
analyticon {z : |z — z| < r} and |f(z)| < M for |z — z5| = r, then

n!
|F(20)] < M.

This has the following very nice application.
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Liouville's theorem

@ Say a function is entire if it is analytic on the whole complex
plane.

@ Recall also that a function f is bounded if there exists a real
number M such that for any z in the domain of f, |f(z)| < M.

Theorem (Liouville's theorem)

Any bounded entire function is constant.

@ e.g. sinz and cos z are analytic everywhere as complex
functions, hence not bounded!

@ in particular the familiar bounds |sinz| <1, |cosz| < 1 over
R are not true over C.
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Fundamental theorem of algebra

Another proof of the fundamental theorem of algebra: if P(z) has
no roots in C, then ﬁ is entire. Either

e degP =0, so P(z) and % are constant;

® or deg P > 1, 50 lim|| o, |P(2)] = 00, 50 lim|;| o0 5z = 0.
1

SO 1Bz is bounded.

Either way % is bounded, so by Liouville's theorem it is
constant. Hence if P has no zeros in C it is constant, i.e. any
non-constant polynomial has a zero in C.
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Proof of Liouville's theorem

If f is bounded (|f(z)| < M for all z) and entire, for any r > |z| by
the Cauchy estimates for n =1

) <M.

S|

Taking r — o0, it follows that f/(z) = 0 for all z, so f is constant.
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Morera's theorem

RecaII if f(z) is analytic on a domain D, then f(z) dz is closed on
(So [,p f(z)dz = [,0dz =0, Cauchy's theorem.)

Morera’'s theorem: loosely speaking, the converse holds. More
precisely:

Theorem (Morera's theorem, version 1)

Let f be a continuous function on a domain D. If for any
sub-domain D' C D we have

/aD/ f(z)dz=0

then f is analytic on D.




Morera's theorem
0®0000

Morera's theorem

Actually, we just need to check the case when D’ is a rectangle of
a certain type:

Theorem (Morera's theorem, version 2)

Let f be a continuous function on a domain D. If for any rectangle
R C D with sides parallel to the coordinate axes we have

then f is analytic on D.
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Proof of Morera's theorem

It suffices to prove version 2. Actually we can also assume D is a
disk, by picking a small disk around any point in D and using
Morera’'s theorem for disks to show that f is analytic there, so
assume D is a disk centered at zj.

In this case exact = closed, so we expect f = F’ for
z
Fz) = / F(w) dw
2
where the path is horizontal and then vertical.

V4
.
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Proof of Morera's theorem

Fix a small complex number h with |h| < e. Then

z+h
F(z—l—h)—F(z):/ f(w) dw

where the path is from z to zy (reverse of the above) to z + h (as
above) or equivalently moving the line:

Te 3

°
20 20

Here we are using the hypothesis that the integral over the
boundary of a rectangle is 0.

Z z+h | Z z+h
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Proof of Morera's theorem

Now
z+h z+h
/ f(W)dW:/ f(z)+ (f(w) — f(z)) dw
zZ z Z+h
:hf(z)+/ (f(w) —f(z)) dw.
Since f is continuous, for any § > 0 we have |f(w) — f(z)| < ¢ for
e small enough, and the length of the path is < 2|h|, so by the ML

bound:
|F(z+ h) — F(z) — hf(z)| < 24]h|.
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Proof of Morera's theorem

Divide by h:

—f(z)| <2

‘F(z+ h) — F(z)
h

so since we can take & as small as we like as h — 0 this is 0.

Therefore F is analytic, so so is F/ = f (by Cauchy's formula for
derivatives!).
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Goursat's theorem

An analytic function f on a domain D:
© has to be complex differentiable on D,
@ and f’ has to be continuous on D.

We claimed that (2) is redundant. We can now justify this:

Theorem (Goursat’s theorem)

If f : D — C is a function such that

exists for every zg € D, then f is analytic (i.e. f' is also
continuous).
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Proof of Goursat's theorem

Note that f is automatically continuous, or else the limit won't
exist, so we can try to use Morera's theorem.

Let R C D be a rectangle. We want to show

/M f(z) dz = 0.
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Proof of Goursat's theorem

Divide R into four equal rectangles Ry, R», R3, Ry:

Note

/3Rf(2) dz = /ale(z) dZ+/8R2f(Z) dz+/8R3f(z) dz+/aR4f(Z) dz

so one of the R; satisfies

/8R,- f(z)dz
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Proof of Goursat's theorem

Relabel this R; to R and repeat the process:

One of the inner rectangles (call it R?) must satisfy

/aR2 f(z)dz /aRf(z)dz .

1
>

1/ f(z)dz
4 | Jort
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Proof of Goursat's theorem

Continue indefinitely:

We get a sequence of R D R' D R2 D .- with

/6 f@)dz /8 f(2)dz|.

1
> =

4n
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Proof of Goursat's theorem

Since the diameters of the R" are decreasing to 0 and they all
include each other, they are converging towards some point z.

Since f is differentiable at zy, for z € R"

f(z) - f(z0)

—f <
Z — 2 (ZO) én

for ¢, — 0 as n — oo.

Let L be the length of OR, so the length of OR" is L/2". Then

|f(z) — f(z0) — f'(20)(z — 20)| < €nlz — 20] < €nl/2".
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Proof of Goursat's theorem

Note f(z9) + f'(20)(z — zo) is analytic everywhere, so by Cauchy's
theorem

/ (f(z0) + f'(20)(z — z0)) dz = 0.
IR"
Therefore by the ML bound

/8 (2

/ (F(2) — F(20) — F(2)(z — 20)) d
ORn
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Proof of Goursat's theorem

Therefore:

< 4" f(z)dz| < L3¢,

f(z)dz
oR

oR"

for all n.

Since €, — 0 as n — 0, the integral must be 0. So by Morera's
theorem f is analytic.
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The operators 5~ and -

When working with the Cauchy—Riemann equations, we needed to
talk about the real and imaginary parts v and v of f, and the x
and y partial derivatives. We would rather have something more
complex-looking.

Define operators

L RN YE R
0z 2\ 9dx  I(iy) 2\0x 9y)’
9 1/ o\ 1[d .0

32_2<0X_3(iy)>_2<<"9x+'8y>
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The operators a and

If f is analytic,

(@)= 5 = o =i
~ox  Od(iy) Oy

using the Cauchy—Riemann equations. Averaging:

()= 5@+ ) =5 (5 - 15 ) =



Complex form of Cauchy—Riemann

On the other hand:

1, , 1/0f of\ of
—§(f(z)—f(z)): <+ ) 55

: of _
So f analytic = Z =0.

More generally if f = u+ iv,

oF 1 (0w ov 0w
0z 2\0x 0Ox Oy

Jy

_ov
ay )

The operators 5—
00®000 ¢
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Complex form of Cauchy—Riemann

Taking real and imaginary parts: g—é =0 if and only if

ou_ov ov_ o
ox Oy’ ox Oy’

the Cauchy—Riemann equations.

So an equivalent form is
or

0z
sometimes called the complex form of the Cauchy—-Riemann
equations.

0,
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Properties

The operators %, % act like partial derivative operators:

0 _of og 0 _of og
8Z(af—kbg)—aa—i-ba, g(af—kbg)—a%%—b%

for constants a, b, and

9 .. \_ 08 Of 0 .\_ 0g Of
LB =fyt5,86 ) =f_+5e



The operators ;—L and j—;
00000@ oz oz

Properties

They also satisfy

ar o oo
0z 07’ z 0z
So e.g. if f and f are both analytic, then
,_or o
0z 0z

and so f is constant.
Next time we'll make some more serious use of these operators.
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