
Lecture 11: using Cauchy’s formula

Complex analysis, lecture 4

October 1, 2025

Last time, we studied complex path integrals. Most directly, we saw how to compute
them by parametrizing the path. More abstractly, we observed that if f(z) is analytic on
a domain D, then f(z) dz is closed; so if D is star-shaped, then f(z) dz is exact, and so we
can find a primitive F for f , i.e. an analytic function F on D such that F ′ = f , and then
we can evaluate path integrals on D using the fundamental theorem of calculus.

The higher-level version of this is Cauchy’s theorem: if D is a bounded domain with
boundary ∂D piecewise smooth and f is analytic on D, extending smoothly to the boundary
∂D, then ∫

∂D

f(z) dz = 0.

As a corollary, we have Cauchy’s theorem: for any z ∈ D,

f(z) =
1

2πi

∫
D

f(w)

w − z
dz.

Today, we want to give some first applications of Cauchy’s theorem and formula. The
most straightforward application is the computation of integrals: if f is analytic on a region
D, then Cauchy’s theorem tells us that its integral over the boundary of D is zero. Similarly,
Cauchy’s formula tells us that the integral over a domain D of anything of the form f(z)

z−z0
is

just 2πif(z).
For example, consider the disk D = {z : |z| < 3}, so ∂D is the circle γ of radius 3. Then∫

γ

z2

z + 2
dz = 2πi · (−2)2 = 8πi.

An interesting simpler example is, for γ any simple closed curve bounding a domain con-
taining the origin, ∫

γ

1

z
dz = 2πi.

When γ is a circle, this matches our calculation last time.
In fact, we can push this method a little further: recall we had the more general formula

f (n)(z) =
n!

2πi

∫
∂D

f(w)

(w − z)n+1
dw,

so we can evaluate anything of this form as well. For example, for γ the circle of radius 3 as
above, ∫

γ

ez

(z + 2)3
dz
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comes from the n = 2 case, with f(z) = ez. Since f (2)(z) = ez, this gives∫
γ

ez

(z + 2)3
dz =

2πi

2!
e−2 =

πi

e2
.

This would otherwise be a very difficult integral to compute!
For a slightly harder version, consider an integral like∫

γ

ez

z2(z + 2)
dz.

This is not of the form we can evaluate using Cauchy’s formula, even the more general
version: we would need to use either f(z) = ez

z2
or g(z) = ez

z+2
, neither of which is analytic

on the whole disk.
However, we can use the following strategy. Let D0 be a disk of some very small radius

r centered at 0, and D−2 another disk of radius r centered at −2 (with r small enough that
they don’t intersect). On D′ = D \D0 \D−2, the function h(z) = ez

z2(z+2)
is analytic, so∫

∂D′
h(z) dz = 0.

Now, we can write ∂D′ (keeping in mind orientations) as γ, in the positive direction, together
with two circles of radii r centered at 0 and −2 in the negative direction, which we call γ0
and γ−2 respectively. Therefore

0 =

∫
∂D′

h(z) =

∫
γ

h(z) dz −
∫
γ0

h(z) dz −
∫
γ−2

h(z) dz,

i.e. ∫
γ

h(z) dz =

∫
γ0

h(z) dz +

∫
γ−2

h(z) dz.

For the first term, note that on the disk D0 of sufficiently small radius r near 0, g(z) = ez

z+2

is analytic, and so we can use Cauchy’s formula (for derivatives):∫
γ0

ez

z2(z + 2)
dz =

2πi

1!
g′(0) =

πi

2

(evaluating the derivative is left as an exercise for the reader). For the second term, similarly
f(z) = ez

z2
is analytic on D−2 for r sufficiently small, so∫

γ−2

ez

z2(z + 2)
dz = 2πif(−2) =

πi

2e2
.

Therefore the total integral is ∫
γ

ez

z2(z + 2)
dz =

πi

2
(1 + e−2).
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We can also use Cauchy’s formula to bound the derivatives of f . For a fixed point z0,
choose r small enough that f is defined on the closed disk {z : |z| ≤ r}. By Cauchy’s formula
(for derivatives), we have

f (n)(z0) =
n!

2πi

∫
|z|=r

f(z)

(z − z0)n+1
dz

=
n!

2πi

∫ 2π

0

f(z0 + reiθ)

rn+1eiθ(n+1)
rieiθ dθ

=
n!

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dz.

If |f(z)| ≤ M for |z − z0| = r, the ML bound gives

|f (n)(z0)| ≤
n!

2πrn
· 2πM =

n!

rn
M.

This is the Cauchy estimate for higher derivatives.
As a corollary, we deduce the following extremely nice result. We say a function is entire

if it is analytic on the whole complex plane. Recall also that a function f is bounded if there
exists a real number M such that for any z in the domain of f , |f(z)| ≤ M .

Theorem (Liouville’s theorem). Any bounded entire function is constant.

This is very surprising: in the real case, we have plenty of very nicely behaved non-
constant analytic functions which are bounded, e.g. sin(x) and cos(x). We have seen that
these functions have nice extensions to the complex plane, and are analytic everywhere,
hence entire; so Liouville’s theorem tells us that, somewhat counter-intuitively, sin z and
cos z are not bounded in the complex setting (since they are entire and not constant). In
particular the bounds | sin(z)| ≤ 1, | cos(z)| ≤ 1 are false in general for z complex.

Given the Cauchy estimate, the proof is now straightforward. If f is bounded and entire,
we fix some M such that |f(z)| ≤ M for all z ∈ C. The Cauchy estimate tells us that
|f (n)(z)| ≤ n!

rn
M for any r > |z|. Since we can take r arbitrarily large (since f is entire), we

can take the right-hand side arbitrarily close to zero, so in fact we must have |f (n)(z)| = 0
for all n and all z. In fact the case n = 1 is enough: this shows that f ′(z) = 0 for all z,
hence f is constant.

Liouville’s theorem gives yet another proof of the fundamental theorem of algebra: sup-
pose that P (z) = anz

n + · · · + a1z + a0 is a complex polynomial with no roots in C. Then
1

P (z)
is an entire function. If n ≥ 1, then |P (z)| → ∞ as |z| → ∞, so

∣∣∣ 1
P (z)

∣∣∣ → 0 as |z| → ∞;

therefore 1
P
is bounded. (In fact, if n = 0 then P is constant so again bounded.) Therefore

by Liouville’s theorem 1
P
must be constant, i.e. P is constant, so the only polynomials with

no complex zeros are the constant ones, i.e. the fundamental theorem of algebra holds.
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