
Lecture 6: improper integrals

Calculus II, section 3

February 7, 2022

So far, when integrating an important thing to check is that the function we’re integrating
is defined everywhere on the interval in question—for example, we couldn’t integrate 1

x
from

0 to 1 because it isn’t defined at 0. Indeed, if we tried to do so anyway and formally
integrated, we’d find that this is the antiderivative of 1

x
, namely log x, evaluated at 1 and at

0, so log 1 − log 0 = +∞. This makes sense from the graph of y = 1
x
, since it looks like it

has infinite area between 0 and 1.
Sometimes, though, weird things will happen. Consider f(x) = 1√

x
. Once again, this is

defined and continuous for x > 0 but not at x = 0, so
∫ 1

0
1√
x
dx doesn’t make sense. However,

we could still try to formally integrate it, and what we get is that by the power rule the
antiderivative of 1√

x
= x−

1
2 is 2

√
x, so this integral would be

2
√

1− 2
√

0 = 2.

This suggests that even though 1√
x

goes to infinity at 0, the area under its graph between 0

and 1 is still finite (and is 2).
In and of itself, this actually isn’t a problem: it is perfectly possible to have a region

with infinite bounds but finite area. However, as we usually understand it this integral still
doesn’t make sense, because it involves evaluating 1√

x
at x = 0. To solve this, we replace the

lower bound with some positive real number a, and then take the limit as a→ 0: we define
the integral

∫ 1

0
1√
x
dx to be lima→0+

∫ 1

a
1√
x
dx. By the fundamental theorem of calculus, this

is just lima→0+ 2(
√

1−
√
a) = 2− 2 lima→0+

√
a = 2, the same as plugging in a = 0, because

the antiderivative 2
√
x of 1√

x
is right-continuous at x = 0.

More generally, whenever we have a function f(x) and an interval [a, b] where f(x) is
defined everywhere except at one endpoint, say a, we can define the integral to be∫ b

a

f(x) dx = lim
a′→a+

∫ b

a′
f(x) dx.

Of course, if b is the point at which the function is not defined we can similarly define∫ b

a

f(x) dx = lim
b′→b−

∫ b′

a

f(x) dx.

If f is undefined at both points, we can define the integral by a double limit:∫ b

a

f(x) dx = lim
a′→a+

lim
b′→b−

∫ b′

a′
f(x) dx.

These are called improper integrals.
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As we saw with f(x) = 1
x
, there is no guarantee that these improper integrals will be

well-defined or finite either: in that case the antiderivative is log x and so we get
∫ 1

0
1
x
dx =

lima→0+
∫ 1

a
1
x
dx = lima→0+ log 1 − log a = − lima→0+ log a, which goes to +∞. However, it

does enlarge the class of integrals we can define.
We’ve seen that

∫ 1

0
1
x
dx does not exist even in this larger sense, but

∫ 1

0
1√
x
dx does, and

is equal to a finite number 2. We might then ask: for what positive real numbers p does∫ 1

0
1
xp dx exist?

Well, antidifferentiating gives x1−p

1−p , so we have∫ 1

0

1

xp
dx = lim

a→0+

∫ 1

a

1

xp
dx = lim

a→0+

1

1− p
− a1−p

1− p
.

If 1 − p > 0, i.e. p < 1, then a1−p tends to 0 as a → 0, and so this integral converges to
1

1−p , recovering 2 in the special case where p = 1
2
. If 1 − p < 0, though (i.e. p > 1), then

a1−p →∞ as a→ 0, so this is not well-defined; and we’ve seen that in the intermediate case
p = 1 it is also not well-defined.

Instead of having infinite vertical bounds, we could also consider improper integrals over
infinite horizontal bounds, i.e. infinite intervals. For example, consider∫ ∞

1

1

x2
dx,

which makes sense as an area but not formally since we can’t look at 1
x2

“at infinity.” Instead,
we again take the limit: we define∫ ∞

1

1

x2
= lim

N→∞

∫ N

1

1

x2
dx = lim

N→∞
− 1

N
+

1

1
= 1.

This is the same formalism we needed to rigorously define our extended definition of the
factorial:

n! =

∫ ∞
0

xne−x dx = lim
N→∞

∫ N

0

xne−x dx.

Let’s again try this for 1
xp : we have∫ ∞

1

1

xp
dx = lim

N→∞

∫ N

1

1

xp
dx = lim

N→∞

N1−p

1− p
− 1

1− p
,

which is finite and equal to − 1
1−p = 1

p−1 if 1 − p < 0, i.e. p > 1, and goes to infinity if

1− p > 0, i.e. p < 1. (For the reader: what about if p = 1?)
In this case, we take the antiderivative, which is straightforward, and then compute its

limit. However, this is not always how improper integrals work in practice. For example,
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with the integral for n!, integrating by parts gives

n! = lim
N→∞

∫ N

0

xne−x dx

= lim
N→∞

(
−xne−x

∣∣∣∣N
0

+ n

∫ N

0

xn−1e−x dx

)

= lim
N→∞

(
−Nne−N + n

∫ N

0

xn−1e−x dx

)
.

If we repeat this integration by parts, we get

lim
N→∞

(
−Nne−N − nNn−1e−n − n(n− 1)Nn−2e−n − · · ·

)
which even ignoring any integral term we end up with is hard to evaluate. However, if we
take the limit first, then we find that all these terms vanish: limN→∞N

ne−N = 0, and so
we only have the integral terms and so get our nice recurrence. This is an instance of a
not-uncommon phenomenon: even when we can’t compute the indefinite integral, we can
sometimes still compute a definite one over an infinite range. Another example is the integral∫∞
0
e−x

2
dx which we needed in order to find the value of (1

2
)!.

When computing improper integrals, we have to be very careful: although it’s (poten-
tially) okay for the integrand to be undefined at the endpoints, so long as the corresponding
limit exists, it has to be defined everywhere else on the interval. For example, consider∫ ∞

0

1

x(log x)2
dx.

How can we integrate this?
Let’s u-substitute: if u = log x, then du = dx

x
and so this integral is (discounting the

bounds as usual)
∫

1
u2
du = − 1

u
+ C = − 1

log x
+ C. Therefore the improper integral is∫ ∞

0

1

x(log x)2
dx = lim

N→∞
lim
a→0

∫ N

a

1

x(log x)2
dx = lim

N→∞
lim
a→0
− 1

logN
+

1

log a
.

We have limN→∞− 1
logN

= 0 since logN tends to infinity as N → ∞, and lima→∞
1

log a
= 0

since log a tends to negative infinity as a → 0. Therefore this whole integral must just be
zero.

But this cannot be possible: the function we are integrating, 1
x(log x)2

, is never zero or

negative on (0,∞), so how can the total area under the curve be zero? It can only be
because this integral is incorrect: it has an extra place where it is not defined that we have
not accounted for. (Where is that place?)

We calculated
∫ 1

0
1
xp dx and

∫∞
1

1
xp dx, so what about combining them? Can we talk about∫∞

0
1
xp dx?
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We can’t: if p ≤ 1, then the term on (1,∞) is undefined, and if p ≥ 1 then the term on
(0, 1) is undefined. Thus for these kinds of functions we can only look at one direction going
to infinity at a time.

There are other functions for which we can look at more, though. Let’s amend the above
function 1

x(log x)2
to make it work better. We still want it to go to infinity at x = 0, so we

keep the factor of x; but we don’t want to have to worry about log x = 0, so we replace
(log x)2 by (log x)2 + 1. In other words, we want to compute the integral

∫∞
0

1
x((log x)2+1)

dx.
How should we do this?

Well, u-substituting worked well before, so let’s try it again: if u = log x, so du = dx
x

,
then this integral is

∫
1

u2+1
du, which we know is tan−1(u) +C = tan−1(log x) + c. Therefore

the improper integral is

lim
N→∞

lim
a→0

tan−1(logN)− tan−1(log a).

As N → ∞, logN → ∞ and so tan−1(logN) approaches π
2
; on the other hand as a → 0,

log a → −∞ and so tan−1(log a) tends to −π
2
. Therefore the total integral exists and is

simply π.
In general, we might want to know whether an improper integral converges, i.e. exists

and is equal to a finite number, or diverges. There are three ways an improper integral can
diverge:

1. the integrand fails to exist at some point in the interior of the interval, as for
∫∞
0

1
x(log x)2

dx

2. the integrand goes to infinity “too quickly” at one of the bounds, as for
∫ 1

0
1
x2

;

3. the integrand goes to zero “to slowly” (or not at all) as x→∞ in the case of an infinite
interval, as for

∫∞
1

1√
x
dx.

For example, f(x) = 1
xp exists on all of (0,∞); for large p (in particular, p > 1) we should

expect that f(x) goes to zero “quickly” as x→∞, and goes to infinity “quickly” as x→ 0.
Conversely for small p (in particular p < 1) we expect that f(x) goes to zero, resp. infinity,
“slowly” as x→∞, resp. as x→ 0.

This is a useful intuition, but it’s not very technical and doesn’t prove anything. For
a more concrete test, we use the integrals we can calculate explicitly, such as 1

xp , and the
comparison test, which is the following principle: if we have two functions f(x) and g(x) on
some interval (a, b), and 0 ≤ f(x) ≤ g(x) for x ∈ (a, b), then the area under f is bounded by

the area under g. In particular, if we know that
∫ b
a
g(x) dx converges, then so does

∫ b
a
f(x) dx;

conversely, if we know that
∫ b
a
f(x) dx diverges, then so does

∫ b
a
g(x) dx. Here a and b can

be real numbers or ±∞.
For example: does the integral

∫∞
1

1
x2+4x

dx converge or diverge? This is actually an
integral we could compute explicitly, but there is an easier way: for every x > 0, we have
x2 + 4x > x2 and therefore 1

x2+4x
≤ 1

x2
. Since

∫∞
1

1
x2
dx converges, by comparison we can

immediately conclude that this integral converges too. (We have no idea what it is other
than that it’s positive and less than

∫∞
1

1
x2
dx = 1, but it definitely exists.)
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Similarly, we could compute
∫∞
1

1√
x+1

dx by hand, or we could apply the comparison test.

The obvious comparison is to 1√
x
, but it’s the wrong way: we have 1√

x+1
≤ 1√

x
, because

√
x <

√
x + 1, and this only tells us that this integral is bounded by

∫∞
1

1√
x
dx, which

diverges anyway so we’ve learned nothing. However, on the interval [1,∞) it works out:
since

√
x ≥ 1, we have

√
x+1 ≤

√
x+
√
x = 2

√
x, and so 1√

x+1
≥ 1

2
√
x
, and since the integral

of the latter diverges it follows that the former integral diverges as well.
We could verify in this way as well that

∫∞
0

1
x((log x)2+1)

dx converges, by splitting it up. On

the interval [2,∞), we have 1
x((log x)2+1)

≤ 1
x(log x)2

, which is straightforward to antidifferentiate

as above to − 1
log x

; since we’ve chosen a lower bound of 2, this antiderivative is well-defined
all the way down to 2 and goes to zero as x → ∞, so this part converges. On the interval
(1
2
, 2), the integral is actually proper since everything is well-defined; and on (0, 1

2
) we have

1
x((log x)2+1)

≤ 1
x(log x)2

again and so can apply the same bound. From this process we see that

we’re actually just using the same good properties of 1
x(log x)2

and just fixing the defect at
x = 1 that makes it diverge.
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