
Lecture 4: trigonometric substitution
Calculus II, section 3
January 31, 2022

So far, the primary methods of integration we know are u-substitution and integration
by parts. Today, we’re going to use those to create more methods: first, we’ll use integration
by parts (among other tools) to compute some trigonometric integrals, and once we know
how to do those we’ll see how we can use clever substitutions to transform more complicated
integrals into trigonometric integrals.

1. Trigonometric integrals

Consider the integral
∫

sin4(x) cos(x) dx. This is amenable to substitution: if u = sinx, then
du = cos(x) dx and so our integral is

∫
u4 du = 1

5u
5 = 1

5 sin5(x).
How about

∫
sin4(x) cos3(x) dx? If we try to do the above method directly, we get stuck:

there’s extra factors of cos(x). But if we notice that in fact there are exactly two extra
factors, we can use the equation cos2(x) = 1− sin2(x): in other words, write∫

sin4(x) cos3(x) dx =
∫

sin4(x) cos2(x) · cos(x) dx

=
∫

sin4(x)(1− sin2(x)) · cos(x) dx

=
∫
u4(1− u2) du

where u = sinx. This is an integral we can solve, since it is a polynomial:∫
u4(1− u2) du =

∫
u4 − u6 du = 1

5
u5 − 1

7
u7 = 1

5
sin5(x)− 1

7
sin7(x).

If we replaced cos3(x) by cos5(x) or cos7(x) we could essentially do the same thing, i.e.
peel off one factor of cosx and replace the remaining term by some power of 1 − sin2(x).
Similarly, if we have something like

∫
sin3(x) cos6(x) dx we can do the same method, switching

the role of sine and cosine.
If both sine and cosine have even exponents, though, this doesn’t work. For example,

how can we evaluate the integral
∫

cos4(x) dx? There are no sin(x) terms for the substitution
u = cosx, and u = sinx doesn’t get us anywhere either.

Instead, we can integrate by parts. Set u = cos3(x) and dv = cos(x) dx, so that du =
−3 cos2(x) sin(x) (by the chain rule) and v = sin(x). Then∫

cos4(x) dx =
∫
u dv = uv −

∫
v du = cos3(x) sin(x) +

∫
3 cos2(x) sin2(x) dx.
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This is no easier an integral, but now we can apply our trick of replacing sin2(x) by 1−cos2(x)
to get back to something more like our original integral:∫

cos4(x) dx = cos3(x) sin(x) + 3
∫

cos2(x) dx− 3
∫

cos4(x) dx,

so solving for the original integral we get∫
cos4(x) dx = 1

4

(
cos3(x) sin(x) + 3

∫
cos2(x) dx

)
.

Thus we’ve reduced the question of integrating cos4(x) to that of integrating cos2(x). This
is often how integrals like this will go: rather than giving us a solution immediately, this
process will reduce us to another (hopefully easier) integral, and we can repeat until we get
to something that we know.

In this case, we actually do know the integral of cos2(x) from last class, where we com-
puted it via essentially exactly this method: it is 1

2(sin(x) cos(x) + x) (up to an additive
constant). Therefore in all we have∫

cos4(x) dx = 1
8
(
2 sin(x) cos3(x) + 3 sin(x) cos(x) + 3x

)
+ C.

By doing variants of this method, we see that we can compute any integral of the form∫
sinm(x) cosn(x) dx, where m and n are integers; this is hardest when m and n are both

even. It’s also possible to use the double angle formula instead of integration by parts; a
problem walking you through this method will be on your homework for this week.

It turns out that (with some modifications) this method works when m and/or n are
negative, too, so we can also compute integrals of ratios of sines and cosines and their inverses
(i.e. tangents, secants, and cosecants). In this case, because we are sometimes integrating
functions of the form 1

something we often end up with logarithms in the final answer, unlike
the case with positive exponents.

For example, let’s integrate tanx. We have∫
tanx dx =

∫
sinx
cosx

dx,

so if u = cosx so that du = − sinx dx we have∫
tanx dx = −

∫
1
u
du = − log u = − log(cos x)

up to a constant. Sometimes we may want to evaluate this when cosx is negative, e.g.∫ 4π/3
2π/3 tanx dx; in this case we can substitute u = − cosx so that du = sin x dx, so in this

case the antiderivative is, up to a constant,∫
tanx dx =

∫
1
−u

= − log u = − log(− cosx)
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In other words when cosx is negative we can replace it by − cosx, so that in general the
antiderivative of tanx is given by − log(| cosx|)+C, which is defined more broadly. Note that
this is still undefined when cosx = 0, i.e. at x = π+2πn for every integer n; this makes sense
because tanx is also undefined at such x. We can similarly compute

∫
secx dx =

∫ 1
cosx dx,

though we need a clever substitution to cancel terms, namely u = secx + tanx so that
du = secx(secx+ tanx) dx = u secx dx (by the chain rule) and therefore∫

secx dx =
∫

1
u
du = log u = log(secx+ tanx),

which similarly becomes log | secx+ tanx|.

2. Trigonometric substitution

We’ve talked about the areas and volumes of some geometric shapes before, but one we’ve
skipped over is one of the simpler ones, namely the area of a disk (i.e. the area enclosed by
a circle). Let’s do that now, say just with a disk of radius 1 for simplicity. The equation of a
circle of radius 1 is just x2 + y2 = 1, so we are looking for the area bounded by the equations
y = ±(1 − x2). To reduce to a single integral, we can make use of the vertical symmetry:
the area of a disk is twice the area of the upper half-disk, which is

∫ 1
−1

√
1− x2 dx. In fact,

using the horizontal symmetry we can simplify even further: this is in turn twice the area of
a quarter-disk, which is given by

∫ 1
0

√
1− x2 dx. How can we compute this integral?

The obvious substitution is u = 1 − x2, but this doesn’t do much for us since there’s
no x term outside the square root. Keeping in mind what we’ve learned, namely that
trigonometric integrals are generally computable, let’s try and make a substitution that
turns this into a trigonometric integral. Instead of writing u as a function of x, in this case
it’s more convenient to write x as a function of some other variable θ; let’s say x = sin θ.
(Of course, this is the same thing as setting θ = cos−1 x, since cos−1 is well-defined on this
interval.)

In this case, we have dx = cos θ dθ and so∫ √
1− x2 dx =

∫
cos θ ·

√
1− sin2 θ dθ.

Since 1 − sin2 θ = cos2 θ and cos θ is positive in the first quadrant, we can safely write this
as
∫

cos2 θ dθ, which we’ve already computed to be 1
2(sin θ cos θ + θ). To switch back to x,

we can replace sin θ by x, but how can we deal with cos θ and θ? Well, we can use the
equation cos θ =

√
1− sin2 θ =

√
1− x2 again in the first case, and for the θ term simply

write θ = sin−1(x). Therefore we have computed the antiderivative∫ √
1− x2 dx = 1

2

(
x
√

1− x2 + sin−1(x)
)

+ C,

valid on the interval from 0 to 1. Evaluating, we conclude that∫ 1

0

√
1− x2 dx = 1

2
(0 + sin−1(1))− 1

2
(0 + sin−1(0)) = 1

2
(sin−1(1)− sin−1(0)),
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so the area of a disk of radius 1 is 2(sin−1(1) − sin−1(0)). If we take our interval for θ to
be, say, between −π

2 and π
2 (which contains exactly the full range of values of sin θ), then

sin−1(0) = 0 and sin−1(1) = π
2 , so we conclude that the area of our disk is π, which agrees

with the usual formula πr2 at r = 1.
The general principle here is: if we’re integrating something with a term that reminds us

of a trigonometric identity, try substituting x for a trigonometric function and see if we can
make use of this identity.

Another example is antidifferentiating 1√
1−x2 . If we again set x = sin θ, we have∫

1√
1− x2

dx =
∫

1√
1− sin2 θ

cos θ dθ =
∫

1
cos θ

cos θ dθ = θ + C = sin−1(x) + C.

Before seeing this integral it isn’t even obvious what the derivative of sin−1(x) is! (Of course,
this is only defined for x between −1 and 1; but the same is true of the original integral.)

If we instead chose to substitute x = cos θ, we would get dx = − sin θ dθ and so∫
1√

1− x2
dx = −

∫
1√

1− cos2 θ
sin θ dθ = −

∫
1

sin θ
sin θ dθ = −θ + C = − cos−1(x) + C.

Therefore there exists some constant C such that sin−1(x) = − cos−1(x) +C for every x; we
can find this constant by evaluating at 0, where we get sin−1(0) = 1 and cos−1(0) = π

2 , so
C = π

2 . Therefore we have sin−1(x) = π
2 − cos−1(x) for every x, which is a reflection of the

identity sin(θ) = cos(π2 − θ).
Beyond this sort of fun, this is a demonstration of a more general principle: when doing

trigonometric substitutions, cos θ and sin θ are usually more or less equivalent, and you should
feel free to choose whichever is more convenient. (This is similar to the idea of integrating
in different directions to get a more convenient formula.)

What about similar but more complicated versions? For example, say we have
∫ 1√

4−x2 dx.
This is very similar to the previous version, but now there is no special property of

√
4− sin2 θ.

What can we do instead?
Well, we want something that will cancel out that 4: instead of x = sin θ, try x = 2 sin θ.

Then we have dx = 2 cos θ and∫
1√

4− x2
dx =

∫
1√

4− 4 sin2 θ
2 cos θ dθ =

∫
1

2 cos θ
2 cos θ dθ = θ + C = sin−1

(x
2

)
.

This generalizes in the way you’d expect; there will be a problem on this week’s homework
going over such generalizations.

Once we understand this sort of integral, the first change that comes to mind to make is
to flip the sign–can we compute for example

∫ 8
4

1√
x2−16 dx?

Along the same lines as last time, we could substitute x = 4 sin θ, so that the (indefinite)
integral becomes ∫

1√
16 sin2 θ − 16

4 cos θ dθ =
∫

1
4
√
− cos2 θ

4 cos θ dθ.
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This is a bit of a problem!
Instead, we want to try a different trigonometric substitution: in this case x = 4 sec θ =

4
cos θ . The key property of the secant is that it has the relationship sec2 θ = 1 + tan2 θ,
as can be seen by dividing 1 = cos2 θ + sin2 θ by cos2 θ. In particular this means that
sec2 θ− 1 = tan2 θ, and so if x = 4 sec θ then

√
x2 − 16 =

√
16(sec2 θ − 1) = 4 tan θ. We also

have d
dθ

sec θ = sin θ
cos2 θ = tan θ sec θ by the chain (or division) rule, so dx = 4 tan θ sec θ and

thus ∫
1√

x2 − 16
dx =

∫
4 tan θ sec θ

4 tan θ
dθ =

∫
sec θ dθ.

To conclude, we can recall this integral from the last section to get∫
1√

x2 − 16
= log | sec θ + tan θ|+ C = log

∣∣∣∣x4 + 1
4
√
x2 − 16

∣∣∣∣+ C.

Thus evaluating we have∫ 8

4

1√
x2 − 16

dx = log
(

8
4

+ 1
4
√

64− 16
)
− log

(
4
4

+ 1
4
√

16− 16
)

= log(2 + 4
√

3)− log 1
= log(2 +

√
3).

Since secant and tangent have appeared as a pair like sine and cosine, we might wonder
whether similarly they are equivalent for these kinds of substitutions. However, the asymme-
try of the relationship between them suggests that they are not: we have sec2 θ− 1 = tan2 θ
for going from secant to tangent (i.e. sec θ substitutions), but 1 + tan2 θ = sec2 θ for going
the other way. This suggests we should look for tan θ substitutions when we have things of
the form x2 + 1 (or with other constants).

We can compute the basic example for this, which goes as above. Let’s try something
slightly different-looking: dropping the square root. This is actually even more convenient
to integrate in this case: if x = tan θ, then dx = sec2 θ dθ and so∫

1
x2 + 1

dx =
∫

1
tan2 θ + 1

sec2 θ dθ =
∫

1
sec2 θ

sec2 θ dθ = θ + C = tan−1(x) + C.

Note that, like 1
x2+1 , the inverse tangent function is defined on all real numbers, unlike for

the inverses of most other trigonometric functions.
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