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Last time we introduced sequences and series, and in particular looked at some cases
where we can see whether or not series converge and compute their value if so, such as
geometric series. In particular we saw the following two tests:

• If limn→∞ an fails to exist or exists and is nonzero, then
∑∞

n=1 an diverges. In other
words, if

∑∞
n=1 an converges, then we must have limn→∞ an = 0.

• If we have two sequences an, bn with 0 ≤ an ≤ bn for every n, then

∞∑
n=1

an ≤
∞∑

n=1

bn,

so if the sum of the bn converges so does the sum of the an; conversely if the sum of
the an diverges, so does the sum of the bn.

The second of these, the comparison test, is only useful if we have something to compare it
to; for this purpose the geometric series

∞∑
n=0

xn =
1

1− x
, |x| < 1

is very useful. (We can also use it to show that series diverge: for example

∞∑
n=0

nen

diverges, since nen ≥ en for all n ≥ 1 and |e| > 1. The finitely many terms where nen < en,
i.e. just at n = 0, don’t affect the convergence.)

We also last time looked at a trickier series
∑∞

n=1
1
n
, the harmonic series, which the above

methods don’t apply to but turns out to diverge due to a slick grouping argument. Today
our goal is to introduce some more powerful methods which can handle this sort of thing.

For an positive, we can think of
∑∞

n=1 an as computing an area, by adding up the areas
of 1 × an rectangles over all n. This is reminiscent of the process for integrals, and indeed
we can relate it to integrals: if an = f(n) for some positive decreasing integrable function
f(x), then ∫ ∞

1

f(x) dx ≤
∞∑

n=1

f(n).

On the other hand, we can shift everything by 1 to get a lower bound, and this does not
affect the convergence of the series:

∞∑
n=2

f(n) ≤
∫ ∞
1

f(x) dx,
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so the sum converges if and only if the integral does.
This lets us check the convergence of the harmonic series much more quickly. For the

integral, we have ∫ ∞
1

1

x
dx = lim

N→∞
log N − log 1

which diverges, so
∞∑

n=1

1

n

must also diverge by the integral test.
More generally, this allows us to look at p-series, like for integrals: for which values of p

does
∞∑

n=1

1

np

converge?
We just saw that it does not converge for p = 1. More generally, we have∫ ∞

1

1

xp
dx =

(
− 1

(p− 1)xp−1

) ∣∣∣∣∞
1

,

which converges (to 1
p−1) for p > 1 and diverges for p < 1. Therefore the series also converges

for p > 1 and diverges for p ≤ 1. We’ve found a whole new family of series we can compute,
which may be useful for the comparison test.

Since we know a lot of methods of integration, this is a very powerful test and can be
applied to more complicated examples. For example, does

∞∑
n=1

n

en

converge or diverge?
Well, if we look at the corresponding integral∫ ∞

1

x

ex
dx,

this looks approachable: we can use integration by parts to see that the antiderivative is

−xe−x +

∫
e−x dx = −xe−x − e−x,

which evaluated at 1 and N converges as N →∞. Therefore our series also converges.
Our methods so far generally require that an be nonnegative. If an may contain negative

numbers, there’s an easy way to get around this: replace it by its absolute value. Then it
turns out that if

∞∑
n=1

|an|
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converges, then so does
∞∑

n=1

an.

Why is this? Because of the comparison test! Namely, first observe that for any numbers
a1, a2, . . . , an, we have |a1 + · · · + an| ≤ |a1| + |a2| + · · · + |an|. This is because on the one
hand if all the an have the same sign, i.e. are all positive or all negative, then the two sides
are equal; if some of the signs are different, then there is some cancellation on the left-hand
side making it smaller. Therefore ∣∣∣∣∣

∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑

n=1

|an|,

and the right-hand side is a sum of nonnegative terms, so if it converges to a finite number
so must the left-hand side, which means that the original sum must converge.

In this case, where the sum of |an| converges, we say that an converges absolutely; what
we showed above is that if an converges absolutely, then it also converges in the regular
sense. The converse is not true, however. Consider the series

∞∑
n=1

(−1)n

n
.

This is an alternating series : the sign of the terms switches every time, i.e. it can be written
as (−1)nbn for some bn which is always positive (or always negative), in this case 1

n
.

In this case, since 1
n

is always getting smaller, the next term will always move back a
little less than to where it was before, so the range it is moving between is getting smaller
and smaller. Since limn→∞

1
n

= 0, eventually this range will get arbitrarily small; in other
words this series will converge. (It turns out that it will converge to − log 2.)

However, if we take absolute values we get

∞∑
n=1

1

n
,

the harmonic series, which we know does not converge! This series is convergent but not
absolutely convergent; in this case we say it is conditionally convergent.

The way that we determined that
∑∞

n=1
(−1)n

n
converges generalizes. The key properties

were that (−1)n

n
is alternating; when we take the absolute value, in that case 1

n
, we get

a sequence which is decreasing; and limn→∞
(−1)n

n
= limn→∞

1
n

= 0. In general, if these
properties hold then we can conclude that the series converges: i.e. if an is alternating, |an|
is decreasing, and limn→∞ an = 0, then

∑∞
n=1 an converges. (It may or may not converge

absolutely.) This is called the alternating series test.
For example,

∞∑
n=0

(−1)n

(n + 1)2
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is an alternating series; we have limn→∞
(−1)n

(n+1)2
= 0 and 1

(n+1)2
is decreasing, so it satisfies the

hypotheses of the alternating series test and therefore converges. In this case, it converges
absolutely:

∞∑
n=0

1

(n + 1)2

converges by the integral test. (We could make this simpler by reindexing, e.g. say m = n+1
so that the series is

∞∑
m=1

1

m2
,

so we can more easily apply our knowledge of p-series.) Since any series which converges
absolutely converges, we could actually have skipped the alternating series test in this case.

Alternating series have a weird property: their sum depends on the order. You’re prob-
ably used to the idea that addition is commutative, though maybe not in that language:
a + b = b + a, and the same is true when you add more numbers. For infinite series, though,
that isn’t necessarily true.

Consider for example the alternating series from before, which we’ll now change by a
sign:

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

To each positive term at an odd index n, e.g. 1
3

at n = 3, we can associate the negative term
at 2n, in this case −1

6
; if we pair the terms like this, we get(

1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

which simplifies to
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · ,

which is just half of the original sum

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
,

and so adds up to 1
2

log 2. But we only rearranged terms!
In fact, more is true: by rearranging terms in a conditionally convergent series, it is

possible to get any number as the eventual sum. Thus it is very important not to do
anything that might change the ordering of more than finitely many terms!

For absolutely convergent series, though, rearrangement will do the expected thing, i.e.
not change the sum. This is because the sort of maneuver above becomes impossible: it
relies on the fact that choosing the correct signs will allow us to move the value of the series
arbitrarily, but for absolutely convergent series the series still converges without any signs
at all and so moving which go where does not affect the result.

Next time we’ll talk about induction and get in a few more convergence tests, and maybe
even say something about power series.
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