
Lecture 2: more functions
Calculus I, section 10

September 8, 2022

First of all: we may not get through everything today and will go quickly on many things.
However, there is another review of precalculus materials being held on Zoom by Professor
Sengupta and his TAs Thursday September 8 at 2 and 5 PM with a third session yet to be
scheduled. You can also use these notes to review material we don’t get to; theoretically,
none of this should be new (but might be in practice, every curriculum is different).

1. Examples of functions

Last time, we talked a lot about what a function is and what we’re allowed to do with them,
but we didn’t give a ton of examples. Today is all about examples of functions, how to work
with them, and a few more ways of making new functions from old ones. For now, let’s
assume all our functions are R→ R, i.e. they take in any real number and spit out another
real number.

1.1. Polynomials
The simplest kind of functions are constant ones: f(x) = c for c some fixed number, not
depending on x; for example, f(x) = 5, f(x) = 0, or f(x) = −1. If the function we have to
work with is of this form, we’re happy: our lives are going to be pretty easy.

The next-best thing we could ask for is a function like f(x) = x: it takes in a real number
x and doesn’t do anything to it, just spits out the same thing it got in. This isn’t quite
as straightforward as a constant function since the output isn’t always the same, but it’s
basically the simplest non-constant function and we’re still pretty happy with it.

Now, recall our various ways of making new functions from old ones: since these are
functions R → R, we can compose them or add, subtract, multiply, or divide them. To
avoid having to worry about dividing by zero, let’s drop division from the list for now, and
composition turns out not to give us anything very interesting with just these functions,
but addition, subtraction, and multiplication are fine: for example, using them we can form
functions like f(x) = 3x, or f(x) = x− 1. We can do more than one operation, too, to get
things like f(x) = 4x+ 6.

A slightly more complicated version is when we multiply f(x) = x with itself : this
gives the function g(x) = x2, which is still not too bad but certainly more complicated
than the previous examples. Combining it with x and the constant functions as above
gives things like 2x2 − 3x + 5; we can also multiply with x more times to get things like
x3, x4, x7 + 2x3 − 9x − 1, and so forth. These are polynomials : anything that you can
make using addition, subtraction, or multiplication from the constant functions together
with x. In practice, we can equivalently think of these as functions which can be written
as anxn + an−1x

n−1 + · · · + a2x
2 + a1x + a0 where the ai are some constants and n ≥ 0 is

some integer, since any expression involving adding, subtracting, or multiplying constants
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with x can be written in this form: for example, (x+ 1)(x2 − 2x− 2) = x3 − x2 − 4x− 2 by
distributing.

Generally speaking, polynomials are very “nice” functions in ways we’ll talk more about
over the next few weeks. One way in which they’re nice is that they’re always defined for
any real number. This will not always be true for our next class of examples.

1.2. Rational functions
Since we formed polynomials using addition, subtraction, and multiplication, it’s natural to
ask what happens if we add division. The result is the notion of a rational function, i.e. a
ratio of two polynomials, for example 2x2−3x+1

x−4 . These are also nice functions in some ways,
but in other ways they are much worse. For example, they are not always defined for all
real numbers: if the denominator is zero, the function doesn’t make sense. For example, the
previous function is undefined at x = 4, since then the denominator is zero.

The exact ways in which rational functions can fail to be defined are a little bit compli-
cated, and we’ll talk more about them when we discuss continuity and asymptotes in a few
weeks.

1.3. Exponential functions
In addition to multiplying and adding copies of x (together with constants) some fixed
number of times, which gives polynomials, we could also try multiplying constants a variable
number of times: for example, f(x) = 2x, so that f(0) = 20 = 1, f(1) = 21 = 2, f(2) = 22 =
4, f(−1) = 2−1 = 1

2 , and so on. Let’s pause to review exponentials quickly.
In the same way that multiplication can be thought of as repeated addition, exponen-

tiation can be thought of as repeated multiplication: an expression like 23 means that we
multiply together 3 copies of 2, i.e. 23 = 2 · 2 · 2 = 8. Another important example is that for
any number b, b1 is always just b: it’s just one copy of b “multiplied together,” so we’re not
doing anything to it, it’s just b again.

There are a few important rules here to be aware of:
• Additivity: bx+y = bx · by for any real numbers b, x, y. (We’ll talk about what this

means when x and y aren’t integers in a minute.) This is because bx is x copies of
b multiplied together, by is y copies of b, so multiplying the two of them gives x + y
copies of b, i.e. bx+y. For example, 23 · 21 = (2 · 2 · 2) · (2) = 2 · 2 · 2 · 2 = 24 = 16.

This already gives us a good way of understanding negative exponents, which don’t really
make sense with the definition above: we can’t take −5 copies of 2, but we can still make
sense of 2−5 because we know that 2−5 · 26 = 2−5+6 = 21 = 2, so 2−5 = 2

26 = 2
64 = 1

32 = 1
25 .

This works in general: b−x = 1
bx . In particular, b−1 = 1

b
, and 1 = b−1 · b = b−1+1 = b0, i.e.

b0 = 1 for every b.
• Multiplicativity: (bx)y = bx·y. This is a little bit harder to see: think about the example

(b2)3. This is b2 ·b2 ·b2, but each b2 is b ·b, so in total this is (b ·b) ·(b ·b) ·(b ·b) = b6 = b2·3.
It’s not obvious, but you can do a few more such problems and convince yourself that
this works in general.
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This lets us define fractional exponents. For example, we don’t yet know what b1/2 is, but
whatever it is we know that (b1/2)2 = b

1
2 ·2 = b1 = b, so b1/2 is some number whose square is

b, i.e.
√
b. (Like with square roots, we use the convention that b1/2 is nonnegative.)

Similarly, b1/3 = 3
√
b, and so on: this lets us define b1/n for any positive integer n.

Therefore for any positive rational1 number m/n, we can define bm/n = (b1/n)m, and so bx
makes sense for any positive rational number x. Using the fact from before that b−1 = 1

b
, we

get that b−x = (bx)−1 = 1
bx , so bx is defined for all rational x.

You might complain that we want to define it for all real x, and as you may or may
not know not all real numbers are rational: for example

√
2 or π cannot be written as a

fraction of integers. We’ll come back to this when we talk about continuity, but the idea is
that we can approximate any real number by a rational number (for example by a decimal
approximation, since e.g. π ≈ 3.14159 = 314159

1000000). We can then “fill in the gaps” to define
f(x) = bx for all real x.

One thing to be careful of is that in all the above, we implicitly assumed b was a positive
number. If b is negative, some things fail: for example, (−1)1/2 =

√
−1 is not a real number.

Once we introduce complex numbers, such as i =
√
−1, this problem goes away,2 but we

won’t deal with that in this class.
We can build more complicated functions out of exponentials: for example, f(x) =

5 · 3x, or f(x) = 2x + 6x. We could also combine them with polynomials to get even more
complicated things like 2−x + x2 + 1 or x4 · (23)x − 2.

Exponentials are also fairly nice functions, though in some ways (such as the complicated
way we have to build them as above) less nice than polynomials.

1.4. Trigonometric functions
Another class of functions is trigonometric functions. These have to do with triangles or the
unit circle, depending how you prefer to think of them. One way is like this: suppose we
have a right triangle with side lengths a, b, and c, and call the angle shown θ.

1A rational number is just one that can be written as a fraction with the numerator and denominator
both integers. This includes all integers, since we can write for example −3 as −3

1 , but it also includes for
example 2

3 or − 16
5 .

2Really it gets transformed into a different problem; complex analysis is tricky that way.
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c b

a

θ

Up to rescaling the whole thing, the shape of the triangle is completely governed by θ; one
way to see this is that the angles of a triangle have to add up to 180◦, so since one is 90◦

and another is θ the last one has to be 90◦ − θ.
Therefore we’d like to be able to, given θ, say what the side lengths are; since they’re

only determined up to scaling, the best we can hope to do is say what the ratios are. These
are named as follows:

cos θ = a

c

sin θ = b

c

tan θ = b

a
.

These are short for cosine, sine, and tangent. (In fact, we’re making another abbreviation,
which is writing sin θ for sin(θ) and so on; this is generally harmless and saves a little space,
but when you’re taking the sine or cosine of more complicated things it’s safest to put in the
parentheses.)

There are three other possible ratios, which also have names, but we usually use the three
above since the remaining three are just their inverses; they are

sec θ = c

a
= 1

cos θ
csc θ = c

b
= 1

sin θ
cot θ = a

b
= 1

tan θ
,

short for secant, cosecant, and cotangent.3

3There are geometric reasons behind these names, which we won’t get into.
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There are many relationships between these functions which can be derived from the
picture above. The most important of these is the relation

sin2 θ + cos2 θ = 1,

where sin2 θ is short for (sin θ)2 and similarly for cos2 θ. This comes from the Pythagorean
theorem: a2+b2 = c2, so dividing by c2 we get a2

c2
+ b2

c2
= (a

c
)2+( b

c
)2 = cos2 θ+sin2 θ = c2

c2
= 1.

Many other relations can be derived from this one.
Another important relationship is that cos(90◦−θ) = sin(θ), and vice-versa sin(90◦−θ) =

cos θ. We can see this by flipping the triangle: as mentioned above, 90◦ − θ is the angle
opposite θ, and using that angle instead swaps a and b, and therefore swaps sine and cosine.

Finally, a word on units: we can talk about angles either using degrees, as we have
been so far, or radians. For degrees, the whole circle is 360◦, so a right angle, which is a
quarter of that, is 90◦; for radians, a circle is 2π radians, since that’s the circumference of
a circle of radius 1, and so a right angle is 2π

4 = π
2 . You can convert between them using

this relationship, or the equivalent relationship that 180◦ is π radians: for example, 30◦ is
1
6 of 180◦ and so is π

6 . Going forward, we’ll mostly use radians in this class, but feel free to
convert to degrees and back if you find that easier; answers in degrees are also fine, you just
need to be able to understand a problem given in radians.

2. Inverse functions

2.1. Inverse functions
Suppose we’re given a relationship between two variables y = f(x), i.e. y depends on x in
some way given by a function of x. If we know y, can we recover x?

Sometimes, the answer is yes. For example (this problem was on the survey), if y =
f(x) = 2x+ 1, then we can just solve for x:

x = y − 1
2

= y

2
− 1

2
.

In this case we say that f is invertible, and write its inverse as f−1, so in this case we have
f−1(x) = x−1

2 and, with the relationship above, x = f−1(y) is equivalent to y = f(x).
More precisely, f−1 is a function such that f−1(f(x)) = x for every x in the domain of

f , and f(f−1(x)) = x for every x in the domain of f−1. In the case above, this means all
real numbers on both sides, and we can check that this is true:

f(f−1(x)) = f

(
x− 1

2

)
= 2 · x− 1

2
+ 1 = x− 1 + 1 = x,

and
f−1(f(x)) = f−1(2x+ 1) = (2x+ 1)− 1

2
= 2x

2
= x.

Generally, the method for finding inverses of functions is exactly like above: set y = f(x)
and solve for x. If you get a function of y, that’s the answer. A slightly more complicated
example is something like y = f(x) = x3 − 1; solving for x, we get x = f−1(y) = 3

√
y + 1.
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Some functions, however, don’t have inverses. A simple example is f(x) = x2. If we try
to solve y = x2 for x, we get two possible solutions: x = ±√y. This isn’t a function, because
there are inputs for y for which it outputs two different numbers (namely all y > 0), and
there are inputs for which it isn’t defined (all y < 0).

What went wrong? Two things: first, there are values of y for which there is more than
one x with f(x) = y. Second, there are values of y for which there is no x with f(x) = y.
These give rise to the two kinds of problematic y above.

This suggests the following: a function is invertible if it is one-to-one, i.e. for every y
there is at most one x with f(x) = y, and onto, i.e. for every y there is at least one x with
f(x) = y; in other words, there is always exactly one such x. The function f(x) = 2x + 1
has this property, but as we’ve seen f(x) = x2 does not.

One way of thinking of this test is called the “horizontal line test”: if you graph your
function and draw a horizontal line across the graph at any point, you should hit exactly
one point on the graph. If you can choose your line such that you hit no points or more than
one point, the function is not invertible.

One way of fixing the problem when a function is not invertible is by restricting the
domain and codomain; this is where the formal perspective from last time comes in handy.
For example, with we think of f(x) = x2 as a function R → R, it is not invertible, because
it is neither one-to-one nor onto. If we restrict the domain to nonnegative numbers, though,
it becomes one-to-one: for any y, there is at most one nonnegative x such that x2 = y. It
still isn’t onto, but we can fix this too: every nonnegative y has a square root, so f(x) = x2

is invertible as a function R≥0 → R≥0.
Another important example is for trigonometric functions. Consider the function y =

sinx.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−5

−4

−3

−2

−1

1

2

3

4

5
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This clearly does not pass the horizontal line test: it is neither one-to-one nor onto. However,
we can do the same restricting the domain and codomain trick. Restricting the codomain is
pretty straightforward: the image is the set of numbers between −1 and 1, written as [−1, 1].
Restricting the image is a little more tricky: there are many different ways we can do it. For
example, we could choose the interval [−π

2 ,
π
2 ]:

x

y

−1 1

−1

1

Now this is invertible! Its inverse looks like this:

x

y

−1 1

−1

1

But we could also have chosen for example [π2 ,
3π
2 ], in which case the graph would look

like this:

x

y

1 2 3 4 5

−1

1

and this is again invertible, with inverse function looking as follows:

7



x

y

−1 1

1

2

3

4

5

2.2. Logarithms
Another special kind of inverse function is worth spending some time on: inverse functions
of exponentials. Namely, if f(x) = bx for some fixed b > 0, does it have an inverse function?

Let’s try plotting an example: f(x) = 2x looks like this.

x

y

−3 −2 −1 1 2 3
−1

1

2

3

4

5

We’ll never be able to intersect more than one point by drawing a horizontal line, but
sometimes there will be no points, so strictly speaking as a function R → R this is not
invertible. However, 2x will always be positive for any real x (since if x ≥ 0, 2x is positive,
and 2−x = 1

2x is also positive), and if we restrict to codomain R>0 then this becomes invertible.
Its inverse has no simple description other than “the inverse function of 2x”; instead we give
it a name, log2(x), read as the logarithm of x with base 2. It is a function R>0 → R, i.e. it
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takes in a positive real number and spits out any real number; its defining property is that
log2(x) is the number such that 2log2(x) = x, and similarly log2(2x) = x. Its graph looks like
this:

x

y

−1 1 2 3 4 5

−3

−2

−1

1

2

3

For example, log2(8) = 3, since 23 = 8; log2(1) = 0, since 20 = 1.
More generally, we define logb(x) to be the inverse function of bx for every positive number

b.
We know some important properties of exponential functions, and we can translate these

into properties of logarithms. For example, we know that bx+y = bx · by. If we replace x by
logb(x) and y by logb(y), this means that

blogb(x)+logb(y) = blogb(x) · blogb(y) = x · y.

Taking logarithms of both sides, we get

logb(x · y) = logb(x) + logb(y).

A special case of this formula gives

logb(x2) = logb(x · x) = 2 logb(x).

We might guess in general that we have

logb(xy) = y · logb(x),

and indeed this is true: you can see it from the multiplicative property of exponentials, as
follows. We have xy = (blogb(x))y = by·logb(x), so taking logb of both sides gives logb(xy) =
logb(by·logb(x)) = y · logb(x).

Finally, we can relate logarithms of different bases, as follows. Fix two positive numbers
b and c, so that logb(x) is the inverse function of bx and logc(x) is the inverse function of
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cx. We have c = blogb(c) and so x = clogc(x) = (blogb(c))logc(x) = blogb(c)·logc(x), so logb(c) · logc(x)
is a number y such that by = x. But this is the definition of logb(x)! So we conclude that
logb(x) = logb(c) · logc(x), or in other words

logc(x) = logb(x)
logb(c)

.

This lets us convert from one base to another.
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