Math 53 – Practice Midterm 2A – 80 minutes

Problem 1. (8 points) Let (\bar{x}, \bar{y}) be the center of mass of the triangle with vertices at (-2, 0), (0, 1), (2, 0) and uniform density $\rho = 1$.

Write an integral formula for \bar{y} . Do not evaluate the integral(s), but write explicitly the integrand and limits of integration.

Problem 2. (8 points) Find the polar moment of inertia I_0 of the unit disk with density equal to the distance from the y-axis.

Problem 3. (7 points) For $\vec{F} = yx^3\hat{\bf i} + y^2\hat{\bf j}$, find $\int_C \vec{F} \cdot d\vec{r}$ on the portion of the parabola $y = x^2$ from (0,0) to (1,1).

Problem 4. (10 points) Consider the vector field $\vec{F} = (ax^2y + y^3 + 1)\hat{\mathbf{i}} + (2x^3 + bxy^2 + 2)\hat{\mathbf{j}}$, where a and b are constants.

- a) (3) Find the values of a and b for which \vec{F} is conservative.
- b) (4) For these values of a and b, find f(x,y) such that $\vec{F} = \nabla f$. (Use a systematic method and show your work.)
- c) (3) Still using the values of a and b from part (a), compute $\int_C \vec{F} \cdot d\vec{r}$ along the curve C given by the parametric equations $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$.

Problem 5. (10 points) Consider the region R in the first quadrant bounded by the curves $y = x^2$, $y = x^2/5$, xy = 2, and xy = 4.

- a) (5) Compute dxdy in terms of dudv if $u = x^2/y$ and v = xy.
- b) (5) Express the area of R as a double integral in uv coordinates and evaluate it.

Problem 6. (7 points)

- a) (3) Let C be a simple closed curve going counterclockwise around a region R. Let M = M(x,y). Express $\oint_C M dx$ as a double integral over R.
 - b) (4) Find M so that $\oint_C M dx$ is the mass of R with density $\rho(x,y) = (x+y)^2$.

Problem 7. (15 points) Consider the region R enclosed by the x-axis, x = 1 and $y = x^3$.

- a) (5) Use Green's theorem to find the flux $\oint \vec{F} \cdot \hat{\mathbf{n}} \, ds$ of $\vec{F} = (1 + y^2)\hat{\mathbf{j}}$ out of R.
- b) (7) Find the flux of \vec{F} out of R through the two sides C_1 (the horizontal segment) and C_2 (the vertical segment).
 - c) (3) Use parts (a) and (b) to find the flux out of the third side C_3 .

Problem 8. (8 points) Let C be the portion of the cylinder $x^2 + y^2 \le 1$ lying in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ and below the plane z = 1. Set up a triple integral in *cylindrical coordinates* which gives the moment of inertia of C about the z-axis; assume the density to be $\rho = 1$.

(Give integrand and limits of integration, but do not evaluate.)

Problem 9. (10 points)

A solid sphere S of radius a is placed above the xy-plane so it is tangent at the origin and its diameter lies along the z-axis. Set up a triple integral in spherical coordinates which gives the volume of the portion of the sphere S lying above the plane z=a. (Give integrand and limits of integration, but do not evaluate.)

Problem 10. (17 points) Let S be the surface formed by the portion of the paraboloid $z = 1 - x^2 - y^2$ lying above the xy-plane, and let $\vec{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + 2(1-z)\hat{\mathbf{k}}$.

Calculate the flux of \vec{F} across S, taking the upward direction as the one for which the flux is positive. Do this in two ways:

- a) (10) by direct calculation of $\iint_S \vec{F} \cdot \hat{\mathbf{n}} dS$;
- b) (7) by computing the flux of \vec{F} across a simpler surface and using the divergence theorem.