Math 53 – Practice Final

Problem 1. Given the points P: (1, 1, -1), Q: (1, 2, 0), R: (-2, 2, 2), find a) $\overrightarrow{PQ} \times \overrightarrow{PR}$; b) a plane ax + by + cz = d through P, Q, R.

Problem 2. The roll of Scotch tape shown has outer radius a and is fixed in position (i.e., does not turn). Its end P is originally at the point A; the tape is then pulled from the roll so the free portion makes a 45-degree angle with the horizontal.

Write parametric equations $x = x(\theta)$, $y = y(\theta)$ for the curve C traced out by the point P as it moves. (Use vectors; θ is the angle shown).

Problem 3. The position vector of a point P is $\vec{r} = \langle 3\cos t, 5\sin t, 4\cos t \rangle$.

a) Show its speed is constant.

b) At what point(s) does P pass through the yz-plane?

Problem 4. Let $w = x^2y - xy^3$, and P = (2, 1).

a) Find the directional derivative $D_{\hat{u}}w$ at P in the direction of $\vec{A} = 3\hat{i} + 4\hat{j}$.

b) If you start at P and go a distance 0.01 in the direction of \vec{A} , by approximately how much will w change? (Give a decimal with one significant digit.)

Problem 5. a) Find the tangent plane at (1,1,1) to the surface $x^2 + 2y^2 + 2z^2 = 5$; give the equation in the form ax + by + cz = d and simplify the coefficients.

b) What dihedral angle does the tangent plane make with the xy-plane? (Hint: consider the normal vectors of the two planes.)

Problem 6. Find the minimum of the function $f(x,y) = x^2 + xy + y^2 - 4x - 5y + 7$ in the first quadrant. (Justify your answer.)

Problem 7. Find the point on the plane 2x + y - z = 6 which is closest to the origin, by using Lagrange multipliers. (Minimize the square of the distance.)

Problem 8. Suppose that x, y, z are constrained by the equation g(x, y, z) = 3. Assume that at the point P: (0,0,0) we have g = 3 and $\nabla g = \langle 2, -1, -1 \rangle$. The equation g = 3 implicitly defines z as a function of x and y. Find the value of $\partial z/\partial x$ at P.

Problem 9. Evaluate by changing the order of integration: $\int_0^3 \int_{x^2}^9 x e^{-y^2} dy dx$.

Problem 10. A plane region *R* is bounded by four semicircles of radius 1, having ends at (1, 1), (1, -1), (-1, 1), (-1, -1) and centers at (1, 0), (-1, 0), (0, 1), (0, -1).

Set up an iterated integral in polar coordinates for the moment of inertia of R about the origin; take the density $\rho = 1$. Supply integrand and limits, but *do not evaluate* the integral. Use symmetry to simplify the limits of integration.

Problem 11. a) In the *xy*-plane, let $\vec{F} = P\hat{i} + Q\hat{j}$. Express in terms of *P* and *Q* (and *dx* and *dy*) the line integral representing the flux of \vec{F} across a simple closed curve *C*, with outward pointing normal vector.

b) Let $\vec{F} = ax\hat{i} + by\hat{j}$. How should the constants a and b be related if the flux of \vec{F} over any simple closed curve C is equal to the area inside C?

Problem 12. A solid hemisphere of radius 1 has its flat base on the xy-plane and center at the origin. Its density is equal to 1. Using an integral in spherical coordinates, find the z-coordinate of its center of mass.

Problem 13. Evaluate $\int_C (y-x) dx + (y-z) dz$ over the line segment C from P: (1,1,1) to Q: (2,4,8).

Problem 14. a) Let $\vec{F} = ay^2\hat{i} + 2y(x+z)\hat{j} + (by^2+z^2)\hat{k}$. For what values of the constants *a* and *b* will \vec{F} be conservative? Show work.

b) Using these values, find a function f(x, y, z) such that $\vec{F} = \nabla f$.

c) Using these values, give the equation of a surface S having the property that $\int_P^Q \vec{F} \cdot d\vec{r} = 0$ for any two points P and Q on the surface S.

Problem 15. Let S be the closed surface whose bottom face B is the unit disc in the xy-plane and whose upper surface U is the paraboloid $z = 1 - x^2 - y^2$, $z \ge 0$. Find the flux of $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ across U by using the divergence theorem.

Problem 16. Using the same data as in the preceding problem, calculate the flux of \vec{F} across U directly, by setting up the surface integral for the flux and evaluating the resulting double integral.

Problem 17. Consider a surface S in 3-space given by an equation z = f(x) (involving x and z alone, not y; its section by any plane y = c is always the same curve.)

Show that if $\vec{F} = x^2\hat{i} + y^2\hat{j} + xz\hat{k}$, then $\oint_C \vec{F} \cdot d\vec{r} = 0$ for any simple closed curve C lying on the surface S. (Use Stokes' theorem.)

Problem 18. Let S be the part of the spherical surface $x^2 + y^2 + z^2 = 2$ lying above the plane z = 1. Orient S upwards, and give its bounding circle C (lying in the plane z = 1) the compatible orientation.

a) Parametrize C and use this parametrization to evaluate the line integral $I = \oint_C xz \, dx + y \, dy + y \, dz$.

b) Compute the curl of the vector field $\vec{F} = xz\hat{i} + y\hat{j} + y\hat{k}$.

c) Write down a flux integral through S which can be computed using the value of I.