Math 53 - Practice Final

Problem 1. Given the points $P:(1,1,-1), Q:(1,2,0), R:(-2,2,2)$, find
a) $\overrightarrow{P Q} \times \overrightarrow{P R}$;
b) a plane $a x+b y+c z=d$ through P, Q, R.

Problem 2. The roll of Scotch tape shown has outer radius a and is fixed in position (i.e., does not turn). Its end P is originally at the point A; the tape is then pulled from the roll so the free portion makes a 45 -degree angle with the horizontal.

Write parametric equations $x=x(\theta), y=y(\theta)$ for the curve C traced out by the point P as it moves. (Use vectors; θ is the angle shown).

Problem 3. The position vector of a point P is $\vec{r}=\langle 3 \cos t, 5 \sin t, 4 \cos t\rangle$.

a) Show its speed is constant.
b) At what point(s) does P pass through the $y z$-plane?

Problem 4. Let $w=x^{2} y-x y^{3}$, and $P=(2,1)$.
a) Find the directional derivative $D_{\hat{u}} w$ at P in the direction of $\vec{A}=3 \hat{\imath}+4 \hat{\jmath}$.
b) If you start at P and go a distance 0.01 in the direction of \vec{A}, by approximately how much will w change? (Give a decimal with one significant digit.)

Problem 5. a) Find the tangent plane at $(1,1,1)$ to the surface $x^{2}+2 y^{2}+2 z^{2}=5$; give the equation in the form $a x+b y+c z=d$ and simplify the coefficients.
b) What dihedral angle does the tangent plane make with the $x y$-plane? (Hint: consider the normal vectors of the two planes.)

Problem 6. Find the minimum of the function $f(x, y)=x^{2}+x y+y^{2}-4 x-5 y+7$ in the first quadrant. (Justify your answer.)

Problem 7. Find the point on the plane $2 x+y-z=6$ which is closest to the origin, by using Lagrange multipliers. (Minimize the square of the distance.)

Problem 8. Suppose that x, y, z are constrained by the equation $g(x, y, z)=3$. Assume that at the point $P:(0,0,0)$ we have $g=3$ and $\nabla g=\langle 2,-1,-1\rangle$. The equation $g=3$ implicitly defines z as a function of x and y. Find the value of $\partial z / \partial x$ at P.
Problem 9. Evaluate by changing the order of integration: $\int_{0}^{3} \int_{x^{2}}^{9} x e^{-y^{2}} d y d x$.
Problem 10. A plane region R is bounded by four semicircles of radius 1 , having ends at $(1,1)$, $(1,-1),(-1,1),(-1,-1)$ and centers at $(1,0),(-1,0),(0,1),(0,-1)$.

Set up an iterated integral in polar coordinates for the moment of inertia of R about the origin; take the density $\rho=1$. Supply integrand and limits, but do not evaluate the integral. Use symmetry to simplify the limits of integration.

Problem 11. a) In the $x y$-plane, let $\vec{F}=P \hat{1}+Q \hat{\mathbf{\jmath}}$. Express in terms of P and Q (and $d x$ and $d y$) the line integral representing the flux of \vec{F} across a simple closed curve C, with outward pointing normal vector.
b) Let $\vec{F}=a x \hat{\imath}+b y \hat{\jmath}$. How should the constants a and b be related if the flux of \vec{F} over any simple closed curve C is equal to the area inside C ?

Problem 12. A solid hemisphere of radius 1 has its flat base on the $x y$-plane and center at the origin. Its density is equal to 1 . Using an integral in spherical coordinates, find the z-coordinate of its center of mass.
Problem 13. Evaluate $\int_{C}(y-x) d x+(y-z) d z$ over the line segment C from $P:(1,1,1)$ to $Q:(2,4,8)$.
Problem 14. a) Let $\vec{F}=a y^{2} \hat{\imath}+2 y(x+z) \hat{\jmath}+\left(b y^{2}+z^{2}\right) \hat{\mathrm{k}}$. For what values of the constants a and b will \vec{F} be conservative? Show work.
b) Using these values, find a function $f(x, y, z)$ such that $\vec{F}=\nabla f$.
c) Using these values, give the equation of a surface S having the property that $\int_{P}^{Q} \vec{F} \cdot d \vec{r}=0$ for any two points P and Q on the surface S.

Problem 15. Let S be the closed surface whose bottom face B is the unit disc in the $x y$-plane and whose upper surface U is the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$. Find the flux of $\vec{F}=x \hat{\mathrm{\imath}}+y \hat{\mathrm{\jmath}}+z \hat{\mathrm{k}}$ across U by using the divergence theorem.
Problem 16. Using the same data as in the preceding problem, calculate the flux of \vec{F} across U directly, by setting up the surface integral for the flux and evaluating the resulting double integral.
Problem 17. Consider a surface S in 3 -space given by an equation $z=f(x)$ (involving x and z alone, not y; its section by any plane $y=c$ is always the same curve.)
Show that if $\vec{F}=x^{2} \hat{\imath}+y^{2} \hat{\jmath}+x z \hat{\mathrm{k}}$, then $\oint_{C} \vec{F} \cdot d \vec{r}=0$ for any simple closed curve C lying on the surface S. (Use Stokes' theorem.)

Problem 18. Let S be the part of the spherical surface $x^{2}+y^{2}+z^{2}=2$ lying above the plane $z=1$. Orient S upwards, and give its bounding circle C (lying in the plane $z=1$) the compatible orientation.
a) Parametrize C and use this parametrization to evaluate the line integral $I=\oint_{C} x z d x+y d y+y d z$.
b) Compute the curl of the vector field $\vec{F}=x z \hat{\imath}+y \hat{\jmath}+y \hat{\mathrm{k}}$.
c) Write down a flux integral through S which can be computed using the value of I.

