Khovanov homology from Fukaya categories of Hilbert schemes

Mohammed Abouzaid

Clay Mathematics Institute/MIT

November 19, 2011
Outline

1. Khovanov homology
2. Fukaya categories of Hilbert schemes
3. Formality of the Fukaya category
In 1999, Khovanov introduced a (bigraded) homology group Kh associated to oriented links in \mathbb{R}^3.

- The euler characteristic of Kh is the Jones polynomial.
- Kh is defined using a projection to \mathbb{R}^2, and skein relations associated to crossing changes.
- Kronheimer and Mrowka have recently proved that Kh detects the unknot.

Question

What is the geometric meaning of Kh?

- In 2005, Seidel and Smith defined *symplectic Khovanov homology*, a singly-graded analogue of Khovanov homology.
- Motivated by homological mirror symmetry, Cautis and Kamnitzer gave a construction of Khovanov homology in terms of derived categories of coherent sheaves (also Thomas).
- Alternative proposal, using gauge theory, due to Witten.
Links and braids

Construct Khovanov homology using \textit{braid closure}:

Crossingless matchings are objects of a category; braids define bimodules.

\[\text{Kh}(K) = \text{Kh}_{\phi}(C_+, C_-). \]
Arc algebra (Khovanov 2001)

For each integer $0 \leq n$, define the arc algebra H_n to be a graded linear category with

- **Objects**: crossingless matchings on the set $\{1, \ldots, 2n\} \subset \mathbb{R}$ contained in the upper half-plane.

- **Morphisms**: $H_n(C_0, C_1) = (H^*(S^2))^\otimes k [k - n]$ where k is the number of components of $C_0 \cup \overline{C}_1$.

Multiplication is defined *diagramatically* starting with the cup product on $H^*(S^2)$ and the trace $H^*(S^2) \to \mathbb{Z}$.
Composition of braids and tensor product of bimodules

Braids form a group, with generators the elementary braids:

The category of bimodules over H_n has a natural tensor product

$$P \otimes_{H_n} Q(C_0, C_1) \equiv \bigoplus_{C, C' \in \text{Ob}(H_n)} P(C_0, C) \otimes Q(C', C_1)/ \sim .$$

Assuming that we have a bimodule Kh_s for each elementary braid,

$$\text{Kh}_\phi \equiv \text{Kh}_{s_0} \otimes_{H_n} \text{Kh}_{s_1} \otimes_{H_n} \cdots \otimes_{H_n} \text{Kh}_{s_k} \quad \text{if } \phi = s_0s_1 \cdots s_k.$$
Cap and Cup bimodules

There is a canonical identification between matchings of $2n - 2$ points, and matching of $2n$ points in which successive integers \{i, i + 1\} are connected by an arc.

For each $i \in \{1, \ldots, 2n - 1\}$, can extend this assignment to a functor

$$\cap_i : H_{n-1} \rightarrow H_n$$

and hence an $H_{n-1} - H_n$-bimodule, and an $H_n - H_{n-1}$ bimodule:

$$\cap_i(C_0, C_1) = H_n(\cap_i(C_0), C_1)$$
$$\cup_i(C_0, C_1) = H_n(C_0, \cap_i(C_1))$$
Elementary bimodules from adjunctions

Proposition (Khovanov 2001)

The bimodules \cap_i and \cup_i are bi-adjoint.
In particular, we have maps of bimodules

$$
\begin{align*}
\epsilon &: \cup_i \otimes H_{n-1} \cap_i \to \Delta H_n \\
\eta &: \Delta H_n \to \cup_i \otimes H_{n-1} \cap_i
\end{align*}
$$

Khovanov defines $\text{Kh}_{\sigma_i} = \text{Cone}(\eta)$ and $\text{Kh}_{\sigma_i^{-1}} = \text{Cone}(\epsilon)$.

![Diagram](image)

Remark

Khovanov homology is determined by the categories H_n and the bimodules \cap_i.
Overview

Seidel and Smith defined \textit{symplectic Khovanov homology} $\mathcal{K}_h(K)$:

1. Construct symplectic manifolds Y_{2n}.
2. Associate to each matching C a Lagrangian L_C in Y_{2n}.
3. Define the \textit{symplectic arc algebra} \mathcal{H}_n to be the subcategory of the Fukaya category with these objects.
4. Use \textit{Lagrangian correspondences} in $Y_{2n-2} \times Y_{2n}$ to define \wedge_i bimodules. Obtain a bimodule $\mathcal{K}_h\phi$ for each braid ϕ.
5. If K is obtained from matchings C_0 and C_1 and a braid ϕ, define

$$\mathcal{K}_h(K) \equiv \mathcal{K}_h\phi(L_{C_0}, L_{C_1}).$$

In the original construction, Y_{2n} is a \textit{nilpotent slice} of type (n, n) in \mathfrak{sl}_{2n}.
Manolescu observed that these spaces are also open subschemes of Hilbert schemes of points on complex surfaces. Given such a polynomial p with no multiple roots, consider the A_{2n} Milnor fibre

$$\{ u^2 - v^2 = p(z) \} \subset \mathbb{C}^3$$

The projection to z has critical values exactly at the roots of p. The projection is quadratic in local coordinates near the critical points. This is an example of a *Lefschetz fibration*.
Matching spheres

A construction of Donaldson assigns to each embedded arc in the plane connecting critical points a *matching sphere*, which is a Lagrangian $S^2 \subset A_{2n}$:

A crossingless matching defines a Lagrangian submanifold of $(A_{2n})^n$ which is disjoint from the diagonal. This descends to the symmetric product $\text{Sym}^n(A_{2n})$.
Matching spheres

A construction of Donaldson assigns to each embedded arc in the plane connecting critical points a *matching sphere*, which is a Lagrangian $S^2 \subset A_{2n}$:

A crossingless matching defines a Lagrangian submanifold of $(A_{2n})^n$ which is disjoint from the diagonal. This descends to the symmetric product $\text{Sym}^n(A_{2n})$.
The Hilbert scheme

The Hilbert scheme of points $A_{2n}^{[n]}$ is the “moduli space” of 0-dimensional schemes of length n on A_{2n}. Given a scheme Z of length n, projection to the z coordinate gives a scheme in \mathbb{C}.

Definition (Seidel-Smith, Manolescu)

$Y_{2n} \subset A_{2n}^{[n]}$ consists of schemes whose projection has length n.

Proposition (Seidel-Smith)

Every crossingless matching C defines a Lagrangian L_C in Y_{2n} which is diffeomorphic to $(S^2)^n$, and is canonical up to isotopy.
A quick reminder about Fukaya categories

Y_{2n} is an affine variety with vanishing first chern class. These properties suffice to define a *Fukaya category* $\mathcal{F}(Y_{2n})$ which is a \mathbb{Z} graded, linear, A_∞ category with the following properties

1. Every simply connected Lagrangian in Y_{2n} defines an object of $\mathcal{F}(Y_{2n})$ which is uniquely defined up to shift.
2. The cohomology of the group of morphisms between L_0 and L_1 is the *Lagrangian Floer homology* $HF^*(L_0, L_1)$.

\[
\]

Definition

The symplectic arc algebra \mathcal{H}_n is the subcategory of $\mathcal{F}(Y_{2n})$ with objects the Lagrangians constructed from crossingless matchings.

Remark

Morphism spaces agree, e.g.

\[
H_{2n}(C, C) = H^*(S^2) \otimes^n = H^*((S^2)^n) = HF^*(L_C, L_C).
\]
For \(i \in \{1, \ldots, 2n - 1\} \), we have an inclusion \(A_{2n-2} \subset A_{2n} \):

\[
\Gamma_i \cong Y_{2n-2} \times S^2 \subset Y_{2n-2} \times Y_{2n}.
\]

Wehrheim-Woodward and Ma’u assign to compact Lagrangians in products of symplectic manifolds a bimodule over Fukaya categories using *quilted Floer theory*.
Cohomological equivalence

One can check that the MWW construction works in this setting despite the non-compactness of Γ_i, yielding:

$$\forall i \in \mathcal{H}_{n-1} - \operatorname{bimod} \mathcal{H}_n$$

Theorem (Rezazadegan)

There are cohomological equivalences of categories $H^*(\mathcal{H}_n) \cong H_n$ and of bimodules $H^*(\forall_i) \cong \cap_i$.

Corollary

For any knot K, there is a spectral sequence

$$\operatorname{Kh}(K) \Rightarrow \mathcal{K}h(K)$$

Remark

Werheim and Woodward have laid the foundations for quilted Floer theory over arbitrary rings, but the full detail of the construction of signs is not yet in the literature.
Formality (Joint work with Ivan Smith)

Proposition (Joyce-Waldron, A-Smith)

The categories \mathcal{H}_n are formal, i.e. we have an equivalence of A_∞ categories

$$\mathcal{H}_n \simeq H_n.$$

Joyce-Waldron prove a similar result for compact complex Lagrangians in holomorphic symplectic manifolds. Our approach uses partial compactifications of Y_{2n}, and also yields:

Theorem (A-Smith)

There is an equivalence of A_∞ bimodules

$$\bigoplus_i \simeq \bigcap_i.$$

In particular, for any knot K, there is an isomorphism

$$\text{Kh}(K) = \mathcal{Kh}(K).$$
Seidel’s formality Lemma

Given an A_∞ algebra \mathcal{A}, the Hochschild cohomology $HH^*(\mathcal{A}, \mathcal{A})$ is the cohomology of (a completion of)

$$
\cdots \leftarrow \text{Hom}(\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}, \mathcal{A}) \leftarrow \text{Hom}(\mathcal{A} \otimes \mathcal{A}, \mathcal{A}) \leftarrow \text{Hom}(\mathcal{A}, \mathcal{A}) \leftarrow \mathcal{A}.
$$

The projection to the first term defines a restriction map

$$HH^*(\mathcal{A}, \mathcal{A}) \to H^*(\mathcal{A}).$$

If the differential on \mathcal{A} vanishes (minimal), then the kernel admits a map to $\text{Hom}(\mathcal{A}, \mathcal{A})$.

Lemma (Seidel)

If \mathcal{A} is minimal and defined over a field of characteristic 0, then \mathcal{A} is formal if and only if there is a pure class $[b] \in HH^1(\mathcal{A}, \mathcal{A})$, i.e. the restriction to \mathcal{A} vanishes, the associated endomorphism of $H^*(\mathcal{A})$ is the Euler vector field

$$[a] \mapsto \deg([a]) [a].$$
Moduli spaces of holomorphic discs in compactifications

Consider a symplectic manifold \overline{M}, with a divisor D representing both $c_1(\overline{M})$ and the symplectic form such that M is the complement of D and \overline{M} is “convex” at infinity. Consider discs with boundary on Lagrangians in M, intersection number 1 with D. Pick a conormal section, and restrict to maps for which the value lies in \mathbb{R}^+.

![Diagram of moduli space of holomorphic discs](image)
Consider a symplectic manifold \overline{M}, with a divisor D representing both $c_1(\overline{M})$ and the symplectic form such that M is the complement of D and \overline{M} is “convex” at infinity.
Consider discs with boundary on Lagrangians in M, intersection number 1 with D. Pick a conormal section, and restrict to maps for which the value lies in \mathbb{R}^+.

![Diagram of discs and Lagrangians](image-url)
Hochschild cohomology classes from partial compactifications

The moduli of spheres encodes a Gromov-Witten invariant:

$$\sum_{c_1(\beta)=1} GW_{0,1}^\beta \in H^2(\overline{M}).$$

Lemma

If the restriction of the above class to M vanishes, then the choice of a bounding cycle defines a class in

$$\text{HH}^1(\mathcal{F}(M), \mathcal{F}(M))$$

Remark

This approach to proving formality is related to work of Seidel and Solomon on the mirror of \mathbb{C}^-actions on categories of coherent sheaves.*
Partial compactifications of Milnor fibres

Let \overline{A}_{2n} denote the partial compactification of A_{2n}

$$\{U^2 - V^2 = W^2 p(z)\} \subset \mathbb{CP}^2 \times \mathbb{C}$$

D consists of the lines $W = 0$ and $U = \pm V$.

![Diagram](image-url)
Partial compactifications of Milnor fibres

Let \overline{A}_{2n} denote the partial compactification of A_{2n}

$$\{ U^2 - V^2 = W^2 p(z) \} \subset \mathbb{CP}^2 \times \mathbb{C}$$

D consists of the lines $W = 0$ and $U = \pm V$.
Partial compactifications of Hilbert scheme

Define \overline{Y}_{2n} to be the open subset of $\overline{A}_{2n}^{[n]}$ consisting of schemes whose projection to $\text{Sym}_n(\mathbb{C})$ has length n. The divisor at infinity is

$$D_{2n} = \{ Z | \text{Supp}(Z) \cap D \neq \emptyset \}.$$

Using the projection to $\text{Sym}_n(\mathbb{C})$, check that \overline{Y}_{2n} satisfies the desired properties. Let $[b_n]$ denote the associated class in $\text{HH}^1(\mathcal{H}_n, \mathcal{H}_n)$.

Lemma

$[b_n]$ is pure.

The proof reduces to computing the moduli space of discs in \overline{A}_{2n} with boundary on a matching sphere.
Formality for bimodules

Assume \mathcal{A} and \mathcal{B} are minimal A_∞ categories, and \mathcal{P} a minimal bimodule. We have natural maps

$$\text{HH}^*(\mathcal{A}, \mathcal{A}) \xrightarrow{\iota_A} \text{H}^*(\text{End}(\mathcal{P})) \xleftarrow{\iota_B} \text{HH}^*(\mathcal{B}, \mathcal{B}).$$

Lemma

\mathcal{P} is a formal bimodule if and only if there are cycles

$$b_A \in CC^1(\mathcal{A}, \mathcal{A}), \ b_B \in CC^1(\mathcal{B}, \mathcal{B}), \text{ and } c_\mathcal{P} \in \text{End}^0(\mathcal{P})$$

such that the following properties hold:

1. b_A and b_B are pure
2. The differential of $c_\mathcal{P}$ is $\iota_A b_A - \iota_B b_B$
3. $c_\mathcal{P}$ is pure, i.e. it induces the Euler vector field

$$\mathcal{P}(X, Y) \rightarrow \mathcal{P}(X, Y)$$

for every pair of objects X and Y.
Formality and quilts

For $i = \{0, 1\}$, let \overline{M}_i be symplectic manifolds with divisors D_i. Let $\overline{\Gamma}$ be a Lagrangian in $\overline{M}_0 \times \overline{M}_1$. For simplicity, assume

- $H^1(M_i) = H^1(\Gamma) = 0$
- $\Gamma \to M_0$ is a submersion, and $\Gamma \to M_1$ is an embedding.

Under these assumptions, Γ defines a functor from $\mathcal{F}(M_0)$ to $\mathcal{F}(M_1)$. Let L_1 be the image of a Lagrangian L_0 under Γ, and assume that the $HH^*(HF^*(L_i, L_i))$ classes defined by D_0 and D_1 are both pure.

Lemma

If $\overline{\Gamma} \cap (D_0 \times \overline{M}_1) = \overline{\Gamma} \cap (\overline{M}_0 \times D_1)$, then the $HF^*(L_0, L_0)$-$HF^*(L_1, L_1)$ bimodule defined by Γ is formal.