
1. (Milnor-Stasheff Problem 3-B) Given vector bundles \(F \subset E \), define the quotient bundle \(E/F \), and prove that it is locally trivial. If \(E \) has a Euclidean metric, show that \(F^\perp \simeq E/F \).

2. (Milnor-Stasheff Problem 3-E) Show that the set of isomorphism classes of rank 1 vector bundles over \(B \) forms an abelian group with respect to the tensor product operation. Show that a given real line bundle \(E \) possesses a Euclidean metric if and only if \(E \) represents an element of order \(\leq 2 \) in this group. [Note: for paracompact \(B \) this is always the case.]

3. Let \(A, B \) be paracompact spaces (feel free to assume they are CW-complexes if it helps), and let \(p : E \rightarrow B \) be a vector bundle over \(B \). Show that if two maps \(f_0, f_1 : A \rightarrow B \) are homotopic, then \(f_0^*E \) and \(f_1^*E \) are isomorphic vector bundles over \(A \).

(Corollary: every vector bundle over a contractible paracompact base \(B \) is trivial.)

Hint: There are several ways of doing this; here is one. Denoting by \(F \) the homotopy, show that the space of all linear isomorphisms between the fibers of \(f_0^*E \) and \(F^*E \) forms a locally trivial fiber bundle over \(A \times I \), and apply the homotopy lifting property to construct a section of this bundle.

4. (a) Show that the set of isomorphism classes of rank 1 Euclidean vector bundles over a CW-complex \(B \) has a natural bijection with the set of two-sheeted covering spaces of \(B \), and hence is isomorphic to \(H^1(B, \mathbb{Z}/2) \).

(b) Show that the isomorphism is given by the first Stiefel-Whitney class.

Hint for (b): recall that \(\mathbb{R}P^\infty = K(\mathbb{Z}/2; 1) \), and observe that the nontrivial element of \(H^1(\mathbb{R}P^\infty, \mathbb{Z}/2) \simeq \mathbb{Z}/2 \) is the first Stiefel-Whitney class of the universal line bundle.