Shukel-Whitney classes

These are characterized by axiomatic properties— the existence & uniqueness will be seen later.

Axioms

For each real vector bundle \(\pi : E \to B \) of rank \(r \), \(\exists \) cohomology classes \(w_i(E) \in H^i(B, \mathbb{Z}_2) \), \(i = 0 \ldots r \), with \(w_0(E) = 1 \in H^0(B, \mathbb{Z}_2) \), st.

1) **Naturality:** \(E' \xrightarrow{f'} E \xrightarrow{f} B \) \(\Rightarrow w_i(E') = f^* w_i(E) \)

2) **Whitney sum:** \(E \oplus F \to B \) \(\Rightarrow w_k(E \oplus F) = \sum_{i=0}^k w_i(E) \cup w_{k-i}(F) \)

eg: \(w_1(E \oplus F) = w_1(E) + w_1(F) \)
\(w_2 = w_2(E) + w_1(E) \cup w_1(F) + w_2(F) \)

3) **Naturality:** for the tautological line bundle \(T \to B \mathbb{P}^1 \), \(w_i(T) \neq 0 \).

Immediate properties:

- \(E \cong E' \) isomorphic \(\Rightarrow w_i(E) = w_i(E') \).
- \(E \to B \) trivial \(\Rightarrow w_i(E) = 0 \ \forall i > 0 \) (since can write \(E \) as pullback \(B \to pt \)).
- \(E \) trivial \(\Rightarrow w_i(E \oplus E') = w_i(E') \).
- \(E \) Eucl. rank \(r \), with \(k \) pairwise linearly indep. sections \(\Rightarrow w_i(E) = 0 \) for \(i > r - k \).

For convenience, def. \(H^*(B, \mathbb{Z}_2) := \prod_{i=0}^\infty H^i(B, \mathbb{Z}_2) \) total cohomology ring

\[\exists a_0 + a_1 + a_2 + \ldots, a_i \in H^i(B, \mathbb{Z}_2) \]

\(\cup \) define a graded commutative ring structure.

and let the total Shukel-Whitney class \(W(E) := 1 + w_1(E) + \ldots + w_r(E) \in H^*(B, \mathbb{Z}_2) \).

Then \(W(E \oplus F) = W(E) \cup W(F) \)

Lemma: Elements of the form \(a = 1 + a_1 + a_2 + \ldots \in H^*(B, \mathbb{Z}_2) \) form a group under mult.

Pf: \(a^{-1} = 1 + (-a_1) + (-a_2) + \ldots \) solve inductively for \(a_k \) by looking at deg \(k \) part of \(a \cdot a^{-1} \).
namely \(a_k + a_{k-1} \bar{a}_1 + \cdots + a_1 \bar{a}_{k-1} + \bar{a}_k = 0 \) determines \(\bar{a}_k \) once \(\bar{a}_1, \ldots, \bar{a}_{k-1} \) known.

(in fact \(\bar{a}_1 = a_1 \), \(\bar{a}_2 = a_1^2 + a_2 \), \(\ldots \))

Conclude: \(U(E) = U(F)^{-1} U(E \oplus F) \). In particular if \(E \oplus F \) is trivial then \(U(E) = U(F)^{-1} \).

E.g. this applies to: \(M \subset \mathbb{R}^n \) small submanifold \(\Rightarrow TM \oplus NM \cong \mathbb{R}^n |_M \) or \(M \) immersed into \(\mathbb{R}^n \) so \(U(NM) = U(TM)^{-1} \).

Example: \(S^n \subset \mathbb{R}^{n+1} \) has trivial normal bundle (vanishing scalar section \(s(k) = k \))

so \(U(TS^n) = U(NS^n)^{-1} = 1 \).

Skylit. Whitney claim doesn't detect the nontriviality of \(TS^2 \).

[Note: \(TS^3 \) is trivial! \(T S^3 \cong \mathbb{R} \) \(\Rightarrow T_0 S^3 \cong 0 \).]

Recall: the cohomology of \(\mathbb{R}^n \) is \(H^i(\mathbb{R}^n, \mathbb{Z}_2) = \mathbb{Z}_2 \) \(\forall 0 \leq i \leq n \).

(1) Cellular chain complex \(C_i = \mathbb{Z}_2 \xrightarrow{d} C_{i-1} = \mathbb{Z}_2 \)

and \(\text{Hom}(\; , \mathbb{Z}_2) \) becomes \(C^i = \mathbb{Z}_2 \xrightarrow{d^*} C^{i+1} = \mathbb{Z}_2 \).

and as ring, denoting by \(a \in H^i(\mathbb{R}^n, \mathbb{Z}_2) \) the nonzero line

\(a^k \) a generator of \(H^k(\mathbb{R}^n, \mathbb{Z}_2) \), \(\forall k \), i.e. \(H^k(\mathbb{R}^n, \mathbb{Z}_2) \cong \mathbb{Z}_2 \langle a \rangle / a^{k+1} \).

(Prove by induction on \(n \). If true for \(\mathbb{R}^n \) then:

incl. \(\mathbb{R}^n \subset \mathbb{R}^{n+1} \) induces \(a \mapsto a^* \) on \(H^0, \ldots, H^n \), maps \(a \mapsto a \), and preserves multiplicative structure.

so true up to \(a^n \). Moreover Poincaré duality (on \(\mathbb{Z}_2 \)):

\(H^i(\mathbb{R}^{n+1}, \mathbb{Z}_2) \oplus H^n(\mathbb{R}^{n+1}, \mathbb{Z}_2) \cong H^{i+1} = \mathbb{Z}_2 \) implies

\(a^n \cdot a = a^{n+1} \neq 0 \).

Example 2: \(\mathcal{T} \rightarrow \mathbb{R}^n \) tautological bundle \(\Rightarrow U(\mathcal{T}) = 1 + a \).

If pullback by inclusion \(\mathcal{R}^n \subset \mathbb{R}^{n+1} \) taut. bundle of \(\mathcal{R}^n \)

so \(i^* \mathcal{T} = \mathcal{R}^n \) \(\Rightarrow \mathcal{T} \mid \mathcal{R}^n = \text{taut. bundle of } \mathcal{R}^n \).

\(\Rightarrow i^* \mathcal{T} \cdot a = a^* \mathcal{T} \cdot a = a^{n+1} \neq 0 \).

Example 3: tangent bundle of \(\mathbb{R}^n \),

\(\text{Lemma. } T \mathbb{R}^n = \text{Hom}(\mathcal{T}, \mathcal{T}^\perp) \) (\(\mathcal{T}^\perp \) other coframe of \(\mathcal{T} \subset \mathbb{R}^{n+1} \)).
\[TS^n = \{(x,v) \in \mathbb{R}^n \times \mathbb{R}^{n+1} | x \cdot v = 0\} \]

The above is the same up to \((x,v) \sim (-x,-v) \) (antipodal involution). Such a pair \((x,v) \Leftrightarrow \text{linear mapping } L : L = \mathbb{R} \cdot x \rightarrow \mathbb{R}^\perp, \quad t \mapsto tv\)

and this gives \(T^x \mathbb{R}^n \cong \text{Hom}(L, L^\perp) \) an algebra.

Corollary: \(T^x \mathbb{R}^n \oplus \mathbb{R} \cong \text{Hom}(\tau, \tau^\perp) \oplus \text{Hom}(\tau, \tau) \)

\[= \text{Hom}(\tau, \tau^{n+1}) = \tau^k \oplus \cdots \oplus \tau^0 \cong \tau \oplus \cdots \oplus \tau. \]

Hence \(w(T^x \mathbb{R}^n) = w(T^x \mathbb{R}^n \oplus \mathbb{R}) = w(\tau)^{n+1} = (1+a)^{n+1}. \)

Example:
- \(w(\mathbb{R}P^1) = 1 \)
- \(w(\mathbb{R}P^2) = 1 + a + a^2 \)
- \(w(\mathbb{R}P^3) = 1 \)
- \(w(\mathbb{R}P^4) = 1 + a + a^2. \)

Corollary: (Stiefel) \(\mathbb{R}P^n \) is parallelizable \(\Rightarrow n = 2^k - 1 \in \{1, 3, 7, 15, \ldots \} \)

[only case where \(\binom{n+1}{i} \) all even \(\forall 1 \leq i \leq n \), \[\text{only } \mathbb{R}P^1, \mathbb{R}P^3, \mathbb{R}P^7 \text{ parallelizable using } \mathbb{C}, \mathbb{H}, \mathbb{O}; \text{ other actually aren't.} \]

Application: If \(M^n \) admits an immersion into \(\mathbb{R}^{n+k} \) then \(w(TM)^{n+1} = 1 + \bar{v}_1 + \bar{v}_2 + \ldots \) has \(\bar{v}_i = 0 \) for \(i > k \).

Example: for \(\mathbb{R}P^4 \), \(w(\mathbb{R}P^4)^{-1} = 1 + a + a^2 + a^3 \) so \(\mathbb{R}P^4 \nRightarrow \mathbb{R}^6 \)

but Whitney's Hopf \(\mathbb{R}P^4 \nRightarrow \mathbb{R}^{2^2 - 1} = \mathbb{R}^7 \); 7 is optimal.

(similarly for \(n = 2^m \), \(\mathbb{R}P^{2^m - 2} \nRightarrow \mathbb{R}^{2^m - 1} \), although Whitney is \(\mathbb{R} \leq \mathbb{R}^{2^{m-1}} \).

Stiefel-Whitney Numbers and Cobordisms:

- To get numerical invariants of closed manifolds, rather than cohomology classes:
 - integrate \(w_i(TM) \) against fundamental class \([M] \in H_n(M, \mathbb{Z}/2)\).

Stiefel-Whitney numbers := \(\langle w_1(TM), \ldots, w_n(TM), [M]\rangle \in \mathbb{Z}/2 \quad \forall i \text{ st. } \sum i = n. \)
For n odd, $n = 2k - 1$, $u(T_{R^P}) = (1 + a)^{2k} = (1 + a)^k$
so all odd u_is are zero \Rightarrow all Stiefel-Whitney w_is are zero
for n even, $u_n(T_{R^P}) = (n + 1) a^n = a^n \neq 0$, and $w_i^n = ((n + 1) a)^n = a^n \neq 0$

Why we care? Let M be a closed smooth n-manifold, not necessarily connected.

Then (Pontryagin \Rightarrow) \quad \exists B smooth compact $(n+1)$-manifold with boundary $\partial B = M$
Then \Rightarrow all the Stiefel-Whitney numbers of M are zero.

Pf of \Rightarrow (\Leftarrow is much harder).

Let $[B] \in H_{n+1}(B, M; \mathbb{Z}_2)$ fundamental class, then $[M] = \partial([B])$ under
$\partial: H_{n+1}(B, M) \to H_n(M)$.

Note TB well-defined (even at boundary) and $TB|_M = TM \oplus \mathbb{R}$

so $u_i(TB)|_M = u_i(TM)$.

Hence any polynomial P in Stiefel-Whitney classes of TM is in the image of
$H^n(B) \xrightarrow{i^*} H^n(M)$, hence $P \in \ker((S : H^n(M) \to H^{n+1}(B, M)))$.

Thus $\langle P, [M] \rangle = \langle P, \partial([B]) \rangle = \langle S(P), [B] \rangle = 0$.

Contrary: M_1, M_2 smooth closed n-manifolds are unorientedly smoothly cobordant
(i.e. \exists smooth compact manifold B^{n+1}, not necessarily st.
$\partial B = M_1 \cup M_2$) iff all of their Stiefel-Whitney numbers are equal.