Calculation methods: excision & Hurewicz

πₙ is much harder to compute than Hn because excision doesn’t work in general! However, there’s still something.

```
A ∩ C ∩ B
```

X = A ∪ B, A∩B = C

(X,B) vs. (A,C)?

Thus:

X = A ∪ B CW-complex, A,B subcomplexes, A∩B = C nowhere connected

If (A,C) is m-connected and (B,C) is n-connected then

the inclusion map induces \(\pi_i(A,C) \to \pi_i(X,B) \)

isom for \(i < m+n \)

souction for \(i = m+n \).

Note: up to \(i < n \) is not surprising since we’ve seen before that, by replacing by CW-approximations, can assume B∩C only has cells of dim \(\geq n+1 \).

Corollary: Freudenthal suspension theorem

The suspension map \(\pi_i(S^n) \to \pi_{i+1}(S^{n+1}) \) is an iso for \(i < 2n-1 \)

souction for \(i = 2n-1 \).

More generally the same holds for \(\pi_i(X) \to \pi_{i+1}(SX) \) whenever

X is an \((n-1)\)-connected CW-complex.

(Suspension map: \(S^i \to X \to S^{i+1} = S(S^i) \to SX \))

Proof: write \(SX = C_+X \cup C_-X \) interestingly along \(X \).

Then suspension map \(\pi_i(X) \to \pi_{i+1}(C_+X, X) \xrightarrow{\text{inc}} \pi_{i+1}(SX, C_-X) \cong \pi_{i+1}(SX) \)

isom for \(i \geq 0 \)

implying for \(i < 2n-1 \)

\(\pi_i(X) \to \pi_{i+1}(C_+X) \to \pi_{i+2}(C_+X) \to \ldots \)

\(\cong 0 \) (contractible)

ie. cone map \(S^i \to X \to C(S^i) : D^i \to CX \)

\(\cong 0 \) for \(i < 2n \)

\(\cong C(X) \) for \(i = 2n \)

\(\cong 0 \) for \(i > 2n \)

\(X \) \((n-1)\)-connected \(\Rightarrow (CX,X) \) is \(n\)-connected, so 14.1 (iso for \(i+1 < 2n \))
Corollary: \(\forall n \geq 1, \pi_n(S^n) \cong \mathbb{Z} \) gen. by identity map. [see also Thm 1].

\[\text{pf: Fundamental \Rightarrow suspending induces } \pi_1(S^1) \to \pi_2(S^2) \cong \pi_3(S^3) \cong \ldots \]
\[\Rightarrow \pi_n(S^n) \text{ for } n \geq 2 \text{ is cyclic (finite a finite).} \]
\[f_k = k \text{ id is a map of degree } k, \text{ i.e. } f_k[S^n] = k[S^n] \in \pi_n(S^n) \cong \mathbb{Z} \]
\[\text{so } f_k \text{ pairwise non-homotopic, } \pi_n(S^n) \cong \mathbb{Z}. \]

Note however \(\pi_3(S^2) = \mathbb{Z} \) (gen. by map \(S^3 \to S^2 \))
\[
\begin{array}{c}
\pi_4(S^3) = \pi_5(S^4) = \ldots = \mathbb{Z}/2.
\end{array}
\]

(\(\pi_{n+k}(S^n) \) stabilizes for \(n \geq k+2 \! \).)

\[\text{Proof of Thm: successive case of increasing generality:} \]

- \textbf{Case 1:} - assume \(A = C \cup (m+1)-\text{cells } e^m \)
\[B = C \cup \text{single } (n+1)-\text{cell } e^{n+1}. \]

(a) \textbf{To show surjectivity of } \(\pi_i(A,C) \rightarrow \pi_i(B,C) \) for \(i \leq n+m \):

let \(f: (I^i, \partial I^i, J^i) \rightarrow (X, B, \partial X) \) - want to push \(f \) away from \(e^{n+1} \)?
\[\text{I compact \Rightarrow image of } f \text{ is compact, so needs only finitely many of } e_{x}^{n+1} \text{'s.} \]
\[\text{PL approximation lemma: can homotope } f \text{ so } \exists \text{ simplex } \Delta_{x}^{m+1} \subset \text{int}(e^{m+1}) \]
\[\Delta_{x}^{m+1} \subset \text{int}(e^{m+1}) \]
so that \(f^{-1}(\Delta_{x}^{m+1}), f^{-1}(\Delta_{x}^{n+1}) \) finite unions of convex polyhedra on which \(f \) is PL.
(on each, \(f \) is a linear map \(\mathbb{R}^i \rightarrow \mathbb{R}^{m+1} \cap \mathbb{R}^{n+1} \); can assume the linear maps are surjective (else take smaller \(\Delta_{x}^{m+1}, \Delta_{x}^{n+1} \) to avoid image of low-rank maps).

\[\text{key observation: for } q \in \Delta_{x}^{m+1}, f^{-1}(q) = \text{finite union of convex polyhedra of} \]
\[\text{dim } \leq i-n-1. \]
\[\text{For } p \in \Delta_{x}^{m+1}, f^{-1}(p) = \text{polyhedron } \text{dim } \leq i-n-1. \]

These are of course mutually disjoint, but we can do better - observe
\[i \leq m+n = (i-n-1) + (i-n-1) < i-1. \text{ So if we choose } q, p \text{ generally,} \]
the images of these polyhedra under \(\pi: I^i \rightarrow I^{i-1} \) (first last coord.) are disjoint.
(specifically, choose \(p_x \in \Delta_{x}^{m+1}, f(\pi^{-1}(\pi(f^{-1}(q)))) \) polyhedron \(\text{dim } \leq i-n \).)
Hence, Lemma:

If \(i \leq m+n \), \(\exists x \in \Delta_{\alpha}^{m+n} \), \(q \in \Delta_{\beta}^{m+n} \) and \(\varphi : I^{i-1} \to [0,1] \)

\[\exists \; \eta \in \Delta_{\beta}^{i} \text{ s.t. } \varphi = 0 \quad \text{on} \quad \Delta_{\beta}^{i}, \quad \varphi^{-1}(q) \in \text{ below graph}(\varphi) \]

\[\varphi^{-1}(p_{\alpha}) \in \text{ above graph}(\varphi) \quad \forall \alpha. \]

This allows us to excise the portion of \(f \) below graph(\(\varphi \)) by a homotopy:

Let \(f_t = \text{ restriction of } f \text{ to region above } \text{ graph}(\varphi) \) \(\quad 0 \leq t \leq 1 \)

(identifying it with \(I^{i-1} \))

By construction:

1. \(\forall t, \; f_t(I^{i-1}) \text{ is disjoint from } P = \bigcup \{ x \} \quad \text{for } \alpha \neq \beta \)
2. \(f_t(I^i) \text{ is disjoint from } Q = \{ q \} \)

so:

we didn’t quite prove yet but \(f \) is homotopic away maps to \((X, B) \)
to a map to \((A, C)\), but we did almost as well: we proved it’s
homotopic away maps to \((X, X-P) \) to a map to \((X-Q, X-(P \cup Q))\)

These are homotopy equivalent (collapsing \(\Delta_{\alpha}^{m+n} \{ p_{\alpha} \} \) to \(\{ q \} \))

so in the commutative diagram of inclusion maps

\[
\begin{array}{ccc}
\pi_1(A, C) & \xrightarrow{i_*} & \pi_1(X, B) \cup \{ q \} \\
\downarrow & & \downarrow \\
\pi_1(X-Q, X-Q-P) & \to & \pi_1(X, X-P)
\end{array}
\]

In last right group, \([f] = [f_t] \text{ where } f_t \text{ came from lower-left} \)

\(\Rightarrow [f] \in \text{ im}(i_*) \).

(6) For injectivity: assume \(f_0, f_1 : (I^i, \partial I^i, J_i) \to (A, C, x_0) \) \(i < m+n \) represent same
element in \(\pi_1(X, B) \): then \(\exists \) homotopy \(F : (I^i, \partial I^i, J_i) \times [0,1] \to (X, B, x_0) \).

Deform \(F \) using PL approximation lemma as before; as above,
can find \(q \in \Delta_{\beta}^{i} \), \(p_{\alpha} \in \Delta_{\alpha}^{m+n} \), and a function \(\varphi : I^{i-1} \times [0,1] \to [0,1], \)
\(\varphi(I^{i-1} \times \{ 0 \}) = 0 \), whose graph separate \(F^{-1}(q) \) from \(\cup_{\alpha} F^{-1}(p_{\alpha}) \).
(Note: The dimension condition is now $i+1 \leq m+n$, i.e. $i < m+n$).

As before this allows us to excise $F^i(Q)$ from the domain of F,

define F to a homotopy between f_0, f_1 among maps

$$(I^i, J^i, J_0) \to (X, Q, X - (P \cup B) , x_0)$$

(whence retracted onto (A, C, x_0)).

Hence f_0, f_1 reprent the same element of $\pi_i(A, C, x_0)$.

Case 2:

$A = C \cup (m+1)_\ast$ cells e_{m+1}^i as in case 1

$B = C \cup$ cells of dim $\geq n+1$.

Subj.: Any $f: (I^i, J^i, J_0) \to (X , B , x_0)$ hits only finitely many cells (by compactness),

and using case 1 repeatedly we can pull it off the cells of $B - C$ one at a time (starting with highest-dim. cells).

Inj.: Similarly for $F: (I^i, J^i, J_0) \to (X , B , x_0)$

Case 3:

$A = C \cup$ cells of dim $\geq m+1$

$B = C \cup$ cells of dim $\geq n+1$ as in case 2.

By cellular approx., can ignore cells of dim $> m+n+1$ in A (don't affect π_i, is $m+n$)

let $A_k = C \cup$ cells of dim $\leq k$, $X_k = A_k \cup B$

Pure result for $\pi_i(A_k, C) \to \pi_i(X_k, B)$ by induction on k starting at $k = m+1 \in$ case 2 and ending at $k = m+n+1$.

Look at (e.g. in rel. homotopy for triple $\langle A_k, A_{k-1}, C \rangle$ and $\langle X_k, X_{k-1}, B \rangle$): $\pi_{i+1}(A_k, A_{k-1}) \to \pi_i(A_{k-1}, C) \to \pi_i(A_k, C) \to \pi_i(A_k, A_{k-1}) \to \pi_i(A_{k-1}, C)$ $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$\pi_i(X_k, X_{k-1}) \to \pi_i(X_{k-1}, B) \to \pi_i(X_k, B) \to \pi_i(X_k, X_{k-1}) \to \pi_i(X_{k-1}, B)$

for $i < m+n$, iso by case 2 iso by induction iso by case 2 iso by induction

\Rightarrow by five lemma, middle map is iso. Conclude by induction

(for $i = m+n$, get surjection by one half of five lemma)

(for $i = 1$, argue directly instead).

General case: use CW-approximation to replace (A, C) and (B, C) by homotopy equivalent CW-pairs so all cells have dim $\geq m+1 > n+1$, i.e. reduce to case 3.

(Since here $(A, C) \simeq (A', C)$ and $(B, C) \simeq (B', C)$ are idem C, fit together to $A' \cup B' \simeq A \cup B$).
Example: we've seen above that \(\pi_r(S^n) \cong \mathbb{Z} \). In fact this lets us calculate
\
\[\pi_n \left(\bigvee_{\alpha} S^n_{\alpha} \right) \cong \bigoplus_{\alpha} \pi_n(S^n_{\alpha}) = \bigoplus_{\alpha} \mathbb{Z} \quad (\text{for } n \geq 2) \]

Indeed, for a finite collection, \(\prod_{\alpha} S^n_{\alpha} = \left(\bigvee_{\alpha} S^n_{\alpha} \right) \vee \) (cells of dim \(\geq 2n \))
so \(\pi_n \left(\bigvee_{\alpha} S^n_{\alpha} \right) \cong \pi_n \left(\prod_{\alpha} S^n_{\alpha} \right) = \prod_{\alpha} \pi_n(S^n_{\alpha}) \vee \) only affects \(\pi_i \), \(i \geq 2n-1 \).

For infinite collection, recall any map \(S^n \to \bigvee_{\alpha} S^n_{\alpha} \) on any homotopy
only hits finitely many of the \(S^n_{\alpha} \), so get \(\bigoplus \pi_n(S^n_{\alpha}) \).

- For \(n \geq 2 \), \(\pi_n(S^1 \vee S^n) \) = free abelian gp w/ countably \(\infty \) generators
 indeed \(\pi_n(S^1 \vee S^n) \cong \pi_n(\text{univ. cover}) \), but univ. cover = \(\vee S^n \infty \)

Note \(\pi_r(S^1 \vee S^n) = \mathbb{Z} \) action is non-trivial.

Generator acts by \(\infty \times \) to \(\infty \times = \text{next generator} \), so in fact
\[\pi_n(S^1 \vee S^n) \cong \mathbb{Z}[[t,t']] \text{ as a module over } \mathbb{Z}[t] \cong \mathbb{Z}[[t]]. \]

Another Corollary of excision:

Prop: If a C.W. pair \((X,A)\) is \(r \)-connected and \(A \) is \(s \)-connected, \(r,s \geq 0 \)
then the maps \(\pi_i(X,A) \to \pi_i(X/A) \) induced by quotient map \(X \to X/A \)
are isos: \(i \leq r+s \)
subjunct: \(i = r+s+1 \).

Pf: \(X \cup CA \) attach cone on \(A \) along \(A \)
\[\begin{array}{c}
\text{CA contractible subcomplex} \\
\Rightarrow \quad X \cup CA \to (X \cup CA)/CA = X/A \quad \text{is a homotopy equivalence.} \\
\end{array} \]

Also: \(A \) \(s \)-connected \(\Rightarrow \) \((CA,A)\) \(s+1 \)-conned (since \(r.e.s = \pi_{i+1}(CA,A) \cong \pi_i(A) \))
Excision \(\Rightarrow \) inclusion induces \(\pi_i(X,A) \to \pi_i(X/(X \cup CA,CA)) \) isom. for \(i \leq r+s \)
\(\text{eqn. for } i = r+s+1 \)
Example: Eilenberg-Maclane space

Def. \(a \text{ k}(G, n) \) is a CW-plex \(K \) s.t.
\[
\pi_n(K) \cong G, \\
\pi_i(K) = 0 \text{ for } i \neq n.
\]

Construction: for \(n \geq 2 \) and \(G \) any abelian group:

1. First build an \((n-1)\)-complex CW-plex \(X \) with \(\pi_n(X) \cong G \):
 - Start w/ a presentation of \(G \) by generators \& relations, i.e. \(G = (\oplus \mathbb{Z})/H \).
 - Consider a wedge \(\bigvee_{\alpha} S^n_{\alpha} \) of spheres, one sphere for each generator \(\alpha \) \(\Rightarrow \pi_n = (\oplus \mathbb{Z}) \).
 - Let \(\varphi_\beta : S^n \to \bigvee_{\alpha} S^n_{\alpha} \) mapping generators of \(H = \text{Ker}(\oplus \mathbb{Z} \to G) \) (i.e. relations).
 - Attach \((n+1)\)-cells \(e^{n+1}_\beta \) along \(\varphi_\beta \) to get a CW-plex \(X \).
 - \(X \) is \((n-1)\)-conn. since only \((n)\)-cells \& \((n+1)\)-cells.

2. k.s. of pair \((X, \bigvee_{\alpha} S^n_{\alpha})\):
 - \(\pi_{n+1}(X, \bigvee_{\alpha} S^n_{\alpha}) \to \pi_n(\bigvee_{\alpha} S^n_{\alpha}) \to \pi_n(X) \to \pi_n(X, \bigvee_{\alpha} S^n_{\alpha}) \)
 - By last proposition:
 - \(\pi_{n+1}(X/\bigvee_{\alpha} S^n_{\alpha}) = \pi_{n+1}(\bigvee_{\beta} S^{n+1}) = (\oplus \mathbb{Z})_{\beta} \) (cofiber approx)
 - \(\pi_n(X) = (\oplus \mathbb{Z})/H = G \).

3. Next kill \(\pi_{n+1}(X) \) by attaching \((n+2)\)-cells along its generators w/o modifying \(\pi_n \).

4. Then kill \(\pi_{n+2}(X) \) by attaching \((n+3)\)-cells and so on... to get a \(\text{k}(G, n) \).

(For \(n = 1 \) & \(G \) any group, not nec. abelian:

Similarly, build a 2-dim. CWplex with \(\pi_1 \cong G \) by taking a wedge of \(S^1 \)'s for generators of \(G \) and attaching 2-cells along relations
then kill \(\pi_2, \pi_3, \ldots \) by attaching higher \(\dim \) cells.)
Ex: \[S^n \text{ is } K(Z,1), \quad T^n = (S^1)^n \text{ is } K(Z^n,1) \] \[\text{rip} \infty \text{ is } K(Z/Z,1) \]
\[\text{rip} \infty \text{ is } K(Z,2) \text{ (w/n) e}. \]

Ex: can build \(X \) with \(\pi_n(X) = G_n \) arbitrary; take \(X = \prod_n K(G_n,n) \).

Prop: Any two \(K(G,n) \) complexes are homotopy equivalent.

Pf: we'd like to use Whitehead's thm. but need to make sure the iso of \(\pi_n \) is.

induced by some actual map. Useful lemma:

Lem: \[X = \left(\bigcup S^n_x \right) \cup Y \quad (\text{as in above construction}, \; n \geq 1) \]
\[\text{Then } \forall \text{ homomorphisms } \psi: \pi_n(x) \to \pi_n(y), \; \exists f: X \to Y \text{ s.t. } f \circ \pi = \psi. \]

Pf: Recall \(\pi_n(X) = \text{(free gp gen by } S^n_x) / \text{(subgp gen by } \varphi_{\beta} : S^n \to S^n_x) \text{.)} \)

- map base point \(\to \) base point.
- over \(S^n_x \), let \(f \) be a map sending \(\psi([x]) \in \pi_n(y) \)

\(\tau_{\psi([x])} \in \pi_n(x) \) up by ind. of \(S^n_x \).

- to extend \(f \) over cell \(e_{\beta}^{n+1} \) w/ attaching map \(\varphi_{\beta} \), need to know that:

\[f \circ \varphi_{\beta} : S^n \to S^n \] is nullhomotopic - true since \(f_{\ast}([\varphi_{\beta}]) = \psi([\varphi_{\beta}]) = \psi(0) = 0 \).

Hence extend to \(f: X \to Y \)

- by contr. \(f_{\ast}([x]) = \psi([x]) \) \(\forall x \), \([x] \) generic \(\pi_n(X) \), so \(f \) = \psi.

So, consider the construction above building a \(K(G,n) \) \(K \) by attaching higher-dim.

handle to \(X = \left(\bigcup S^n_x \right) \cup \left(\bigcup e_{\beta}^{n+1} \right) \) to kill its \(\pi_n, \pi_{n+2}, \ldots \)

and let \(K' \) any other \(K(G,n) \).

By lemma, \(\exists \text{ map } f: X \to K' \) realizing isomorph \(\pi_n(X) = \pi_n(K') = G \).

To extend \(f \) to \(K \): for each \((n+2) \)-cell \(e^{n+2} \) w/ attaching map \(\varphi: S^{n+1} \to X \)

\(f \circ \varphi \) is nullhomotopic in \(K' \) since \(\pi_{n+1}(K') = 0 \), hence \(f \) extends every cell.

Continue over all higher dim! Cells of \(K \), and obtain \(f: K \to K' \).

By Whitehead's thm, \(f \) is a homotopy eqv.