Homotopy groups: \(\pi_n(X) \) generalizes \(\pi_1 \): homotopy classes of based loops \((S^1, x_0) \rightarrow (X, x_0) \) to homotopy classes of based maps \((S^n, x_0) \rightarrow (X, x_0) \).

At first glance, may seem similar to \(H_n \), and indeed closely related, but still quite different… e.g. \(H_2(S^n) \) easy to compute, \(\pi_2(S^n) \) very hard (and still open problem!!)

Definition. Let \(I^n = [0,1]^n \) unit cube, \(X \) space with base point \(x_0 \),

\[
\pi_n(X, x_0) = \text{homotopy class of maps } f: (I^n, \partial I^n) \rightarrow (X, x_0).
\]

(Where homotopies should satisfy \(f_t(\partial I^n) = x_0 \forall t \))

Remarks:
- For \(n = 1 \), agree with \(\pi_1 \). (Intervals w/ both ends at \(x_0 \) \(\Rightarrow \) loops)
- For \(n = 0 \), by convention \(I^0 = \text{point} \), \(\partial I^0 = \emptyset \),

\[
\pi_0(X, x_0) = \{ \text{path components of } X \}
\]

For \(n \geq 2 \), define a sum operation on \(\pi_n \) (extend product on \(\pi_1 \)):

\[
\begin{align*}
\text{Def.:} & \quad (f+g)(s_1, \ldots, s_n) = \left\{ \begin{array}{ll}
 f(2s_1, s_2 \ldots s_n) & s_1 < \frac{1}{2} \\
 g(2s_1 - 1, s_2 \ldots s_n) & s_1 \geq \frac{1}{2}
\end{array} \right. \\
= & \quad (-f)(s_1, \ldots, s_n) = f(1-s_1, s_2 \ldots s_n)
\end{align*}
\]

Agree with def. on \(\pi_1 \).
define a group (identity = constant map \(\text{in} \to x_0 \))
(associativity up to homotopy: same as \(f \circ (g \circ h) \sim f \circ (g \circ h) \))
also \(f + (-f) \sim \text{id} \)

However: \(f \) for \(n \geq 2 \), + is commutative & \(\pi_n(X, x_0) \) is an abelian group

\[
\begin{array}{c}
\text{if } f, \ g \\
\begin{array}{c}
\begin{array}{c}
\text{f + g} \\
\end{array} \\
\end{array} \\
\end{array}
\end{array}
\]

shrink domains of \(f \& g \)
to smaller cubes inside \(\text{in} \)
(map \(\equiv x_0 \) outside)

delete subsets around each other

Two other useful viewpoints on \(\pi_n \):

1) \(\text{in} / \partial \text{in} \approx \text{in} / \partial \text{in} \approx S^n \), so maps \((S^n, \partial S^n) \to (X, x_0) \)

are the same as maps \((\text{in}, \partial \text{in}) \to (X, x_0) \)

hence \((S^n, x_0) \to (X, x_0) \).

- addition is then: \(S^n \xrightarrow{c} S^n \cup S^n \xrightarrow{f \lor g} X \)

2) Can think of \(\pi_2 \) as loops of based loops in \(X \) \((\gamma_k(s) = f(t, s), x_0) \)

\(S_0 \xrightarrow{\text{reflect equator}} S_0 \\xrightarrow{f \lor g} X \)

loop space \(\Omega X = \text{based loops in } (X, x_0) = \{ \text{maps } (I, \partial I) \to (X, x_0) \} \)

w/ base pt = const loop compact-open topology \(U_{k, W} = \{ f | f(k) \in W \} \) (local uniform topology)

By def. of sum operation, this is a group isomorphism.

Similarly, \(\pi_n(X) \cong \pi_n(\Omega X) \) \((\gamma(t_1, ..., t_n))(s) = f(t_1, ..., t_{n-1}, s) \)

Dependence on basepoint: assume \(X \) path connected; \(\delta : I \to X \) path \(x_0 \)

\[
\begin{array}{c}
\text{Induce an isomorphism } \delta_* : \pi_0(X, x_1) \cong \pi_0(X, x_0)
\end{array}
\]

with \(\delta_* \cdot \eta_* = (\delta \cdot \eta)_* \) and \((\delta^* \eta)_* = (\eta^* \delta)_* \)
Proof: given $f: (X, x_0) \to (Y, y_0)$, define $\gamma \circ f = (f \text{ in subarc,}
\text{interpolate } x_0 \to x_1 \text{ radially along } \gamma).
\text{Clearly } (\gamma \circ f) = \gamma \circ (\gamma \circ f).
\text{Claim } (\gamma \circ f) + (\gamma \circ g) = \gamma \circ (f + g).
\text{So } [f] \mapsto [\gamma \circ f] \text{ (clearly well-def.) is a group homomorphism } \gamma_g.
\text{Clearly } \delta_1 \cdot \gamma_1 = (\gamma_1)_*; \delta_k \text{ is an isom because } (\gamma_1)_* \gamma_1 = \text{id}.

Lec2 Fri 1/20
So can write $\pi_n(X)$ & forget base pt ... but not too much! as in the case of π_1,
these iss are noncanonical! in fact, considering case where g = loop in (X, x_0), get
an action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$ by automorphisms!
(for $n = 1$, $\pi_1([f]) = \frac{[gfg^{-1}]}{[g]}$ is conjugation by $[g]$ in π_1).
This make $\pi_n(X)$ a $\mathbb{Z}[\pi_1(X)]$ module for $n \geq 2$.
(Even through π_n is abelian, it can still have a nontrivial module structure over π_1.)
(Exercise: $\pi_2(S^2 \vee S^1)$? module structure?)

Basic properties of π_n:
- π_n is a functor, i.e. a map $\varphi: (X, x_0) \to (Y, y_0)$ induces $\varphi_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$
 $\varphi_* [f] = [\varphi \circ f]$.
 Clearly, $\varphi_* \circ \gamma = \gamma_* \circ \varphi$; $(\varphi \circ \varphi)_* = \varphi_* \circ \varphi_*$.
 In particular a homotopy equivalence induces isomorphism π_n.
• Covering spaces:

Prop: \(\forall n \geq 2, \pi_n(X, x_0) \rightarrow \pi_n(\tilde{X}, \tilde{x}_0) \) is an isomorphism

Pf: every map \((S^n, x_0) \rightarrow (X, x_0) \) lifts to \(\tilde{X} \) for \(n \geq 2 \) (\(S^n \) simply connected) (uniquely). This yields \(\sim \) \(\forall n \geq 2 \).

In particular, if the universal cover \(\tilde{X} \) of \(X \) is contractible then \(\pi_n(X) = 0 \) \(\forall n \geq 2 \).

E.g.: for the torus \(T^n = (S^1)^n \), the universal cover is \(\mathbb{R}^n \), so \(\pi_i(T^n) = 0 \) \(\forall i \geq 2 \).

(say \(T^n \) aspherical).

• Products:

Prop: \(\pi_n(\prod_{i \in I} X_i) \cong \prod_{i \in I} \pi_n(X_i) \)

Pf: maps \(S^n \rightarrow \prod_{i \in I} X_i \) \(\leftrightarrow \) collection of maps \(f_i: S^n \rightarrow X_i \) \(\forall i \)

same for homotopy \(S^n \times I \rightarrow \prod_{i \in I} X_i \) \(\leftrightarrow \) collection of homotopies.

Again much simpler than homology (Künneth formula).

Relative homotopy groups: for a pair \((X, A) \) and base point \(x_0 \in A \):

\[
\begin{align*}
I^n &= \{ x \in D^n : \text{dist}(x, \partial D^n) < 1 \} \\
I^{n-1} &= I^n \setminus \{ x \}
\end{align*}
\]

\[
\begin{align*}
\pi_0^n(X, A, x_0) &= \text{homotopy classes of maps} \\
(I^n, \partial I^n, J_n)
ightarrow (X, A, x_0)
\end{align*}
\]

Alternatively, since \((I^n, \partial I^n) / J_n \cong (D^n, S^{n-1}) \), can think of

\(\pi_0^n(X, A, x_0) \) as homotopy classes of maps \((D^n, \partial D^n = S^{n-1}, x_0) \rightarrow (X, A, x_0) \)

(sbee \(\pi_2(X, A) \) is degree in \(X \) w/ boundary in \(A \)).

Addition: as before, concatenate in 1st coordinate.

Composition trick only works for \(n \geq 3 \) though (can't use \(n \)-th coordinate as before)

so:

\[
\pi_n(X, A, x_0) = \begin{cases}
\text{set for } n = 1 \\
\text{group for } n = 2 \\
\text{abelian gp for } n \geq 3
\end{cases}
\]
Compression criterion: \(f: (D^n, S^{n-1}, s_0) \rightarrow (X, A, x_0) \) represents 0 in \(\pi_n(X, A, x_0) \)
iff it is homotopic rel \(S^{n-1} \) to a map with image \(\subseteq A \)

PF: if \(f \sim g \) with \(g(D^n) \subseteq A \) then \([f] = [g]\) and \([g] = 0\) since can compose \(g \) with deformation retraction of \(D^n \) to \(s_0 \) to get \(g \sim \text{cont map} \).

- Conversely, if \(f \sim 0 \) via homotopy \(F: D^n \times [0,1] \rightarrow X \)
 then compose \(F \) with homotopy \(\begin{array}{c}
 D^n \\
 \uparrow \downarrow
 \end{array} \xrightarrow{i \circ j} S^{n-1} \times \{0,1\} \cup D^n \times \{1\} \)
 to get a homotopy from \(f \) to map w/ values in \(A \) stationary on \(S^{n-1} \).

- \(\phi: (X, A, x_0) \rightarrow (Y, B, y_0) \) induces homomorphisms on \(\pi_n \), as before.

Long exact sequence: (cf. relative homology!)

Thm:

\[\ldots \rightarrow \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \xrightarrow{i_*} \ldots \rightarrow \pi_0(X, x_0) \]

- \(i_*: A \subseteq X \) inclusion
- \(\partial: \pi_n(X, A, x_0) \rightarrow \pi_{n-1}(A, x_0) \) restriction to boundary (from \(i^{n-1} \) to \(i^{n-1} \) or \(D^n \) to \(S^{n-1} \)).

(\& similarly for a triple \((X, A, B)\) w/ \(x_0 \in B \subseteq A \subseteq X \), relative \(\pi_n \)'s).

PF:
- exactness at \(\pi_n(X, x_0) \): \(j_* \circ i_* = 0 \) by compression criterion (maps to \(A \) represent zeros in \(\pi_n(X, A) \)).

Assume \(f: (I^n, \partial I^n) \rightarrow (X, x_0) \) represents zero in \(\pi_n(X, A) \), then by compression criterion can homotope \(f \) (keeping \(\partial I^n \rightarrow x_0 \)) to a map \((I^n, \partial I^n) \rightarrow (A, x_0) \) hom \([f] \in \text{Im } i_*\).

- exactness at \(\pi_n(X, A) \): \(\exists \delta j_\delta = 0 \) since boundary reduction of a map \((I^n, \partial I^n) \rightarrow (X, x_0) \) is cont; conversely, assume \(f: (I^n, \partial I^n, j_n) \rightarrow (X, A, x_0) \) has \(\partial [f] = 0 \), i.e. \(f|_{I^{n-1}} \subseteq \text{cont} \), by homotopy \(F: I^{n-1} \times [0,1] \rightarrow A \), then \(f \) is homotopic rel \(\partial I^{n-1} \sim x_0 \) maps \((I^n, \partial I^n, J_n) \rightarrow (X, x_0) \) to \(\begin{array}{c}
 x_0 \\
 \downarrow f \\
 x_0
 \end{array} \xrightarrow{\sim} \begin{array}{c}
 \delta f: (J^n, \partial J^n) \rightarrow (X, x_0)
 \end{array} \)

(stuck \(f \) with homotopy of \(F \))
exactness at \(\pi_n(A, x_0) \): \(i_*i^* = 0 \) since neither \(i \) nor \(i^* \) of \(f : X \to A \) is homotopic rel. \(A \) to constant map at \(x_0 \) itself!

Conversely: if \(i^*_*(f_*) = 0 \) then \(f : (X^1, \partial X^1, J_{n+1}) \to (A^1, \partial A^1, J_n) \)

\[f : (I^{n+1}, \partial I^{n+1}, J_{n+1}) \to (X, A, x_0) \]

is homotopic rel. \(\partial I^n \) to constant map in \(X \)

The homotopy give \(F : (I^{n+1}, \partial I^{n+1}, J_{n+1}) \to (X, A, x_0) \), \(i_*([F]) = [f_0] \).

Ex.: Cone \(C_X = X \times I / X \times \{0\} \)

\(C_X \) contractible \(\Rightarrow \) get \(\pi_n(C_X) \to \pi_n(CX, x) \to \pi_{n-1}(X) \to \pi_n(CX) \)

\(0 \to 0 \) isom.

The 0.c.s. in natural with maps of pairs; and change of basepoints induce isomorphisms on relative \(\pi_n \)'s (\(x, f = \))

Def. \((x, x_0) \) is \(n \)-connected if \(\pi_k(x, x_0) = 0 \) \(\forall k \leq n \).

- 0-connected = path conn. \((\Rightarrow x_0 \) doesn't matter
- 1-connected = simply conn.

\(\pi_k(x, x_0) = 0 \) \(\forall x_0 \in X \) \(\Rightarrow \) every map \(S^k \to X \) is homotopic to a constant map

\(\Rightarrow \) every map \(S^k \to X \) extends to a map \(D^{k+1} \to X \)

Similarly for pairs,
\(\pi_k(x, A, x_0) = 0 \) \(\forall x_0 \in A \)

\(\Rightarrow \) every map \((S^k, S^{k-1}) \to (x, A) \) is homotopic rel. \(S^{k-1} \) to a map \(D^k \to A \)

\(\Rightarrow \) every such maps to a map \(D^k \to A \)

Say \((x, A) \) is \(n \)-connected if \(\pi_k(x, A) = 0 \) \(\forall k \leq n \).