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Abstract. This paper deals with mathematical issues relating to the computation

of spectra of self adjoint operators on Hilbert spaces. We describe a general method

for approximating the spectrum of an operator A using the eigenvalues of large finite

dimensional truncations of A. The results of several papers are summarized which

imply that the method is effective in most cases of interest. Special attention is paid

to the Schrödinger operators of one-dimensional quantum systems.

We believe that these results serve to make a broader point, namely that numerical

problems involving infinite dimensional operators require a reformulation in terms of

C∗-algebras. Indeed, it is only when the given operator A is viewed as an element

of an appropriate C∗-algebra A that one can see the precise nature of the limit of

the finite dimensional eigenvalue distributions: the limit is associated with a tracial

state on A. For example, in the case where A is the discretized Schrödinger operator

associated with a one-dimensional quantum system, A is a simple C∗-algebra having

a unique tracial state. In these cases there is a precise asymptotic result.
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1. Introduction. We discuss methods for computing the spectrum σ(A), and
especially the essential spectrum σe(A), of bounded self-adjoint operators A on
separable Hilbert spaces.

We mean to take the term ‘compute’ seriously. Most operators that arise in
practice are not presented in a representation in which they are diagonalized, and
it is often very hard to locate even a single point in the spectrum of the operator
[6], [7], [8], [12], [13], [15]. Some typical examples will be discussed in section 3.
Thus, one often has to settle for numerical approximations to σ(A) or σe(A), and
this raises the question of how to implement the methods of finite dimensional
numerical linear algebra to compute the spectra of infinite dimensional operators.
Unfortunately, there is a dearth of literature on this basic problem and, so far as
we have been able to tell, there are no proven techniques.

In this paper we establish an effective method for approaching such problems; we
discuss issues associated with operator theory and operator algebras, but not issues
belonging properly to numerical analysis. Thus, we address the question of whether
or not certain finite dimensional approximations converge to the correct limit, but
we do not address questions relating to how fast they converge nor how this method
might be implemented algorithmically. Nevertheless, it may be appropriate to point
out that these methods have been effectively implemented in a Macintosh program
[2] which is available from the author.

The following section contains a general method for computing the essential spec-
trum of a self adjoint operator. The method depends on choosing an orthonormal
basis and approximating the operator with n × n matrices obtained as sections of
the infinite matrix of the operator with respect to this basis. Not every orthonor-
mal basis is appropriate, and we develop criteria which show how the basis must be
chosen. This involves an abstraction of the classical notion of band-limited matrix.

Our method is effective for computing the essential spectrum. When there is a
difference between the spectrum and essential spectrum, our results give no infor-
mation about points in the difference σ(A) \ σe(A). However, since σ(A) \ σe(A)
consists merely of isolated eigenvalues of finite multiplicity, this difference is usually
insignificant and often empty (as it is for the main examples below).

In section 3 we describe the source of our principal examples of self adjoint
operators. We show how one should ‘discretize’ the canonical commutation relations
so as to preserve the uncertainty principle, and relate the resulting Schrödinger
operators to the tridiagonal operators considered in section 4. The one-parameter
family of C∗-algebras generated by the discretized canonical commutation relations
turns out to be the one-parameter family of noncommutative spheres of Bratteli,
Elliott, Evans and Kishimoto [9], [10], [11]. In our case the parameter is related to
the numerical step size.

In section 4 we clarify the role of C∗-algebras in numerical problems of this
kind. In particular, the C∗-algebra s associated with a broad class of tridiagonal
operators are simple C∗-algebra s having a unique tracial state. The tracial state
plays an essential role in describing the limit of the eigenvalue distributions of the
approximating sequence of finite dimensional truncations of the basic operator.

While there are some new results below, what follows is primarily an exposition
of the results of several recent papers [1], [2], [3], [5].
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2. Filtrations and degree. Let H be a Hilbert space. A filtration of H is an
increasing sequence

F = {H1 ⊆ H2 ⊆ . . . }

of finite dimensional subspaces Hn of H with the property that

lim
n→∞

dimHn = ∞.

The filtration F is called proper or improper according as the union ∪Hn is dense
in H or is not dense in H. In general, we will write Pn and P+ for the projections
onto the subspaces Hn and ∪Hn respectively.

The simplest filtrations are associated with orthonormal sets in H. For example,
if {en : n = 1, 2, . . . } is an orthonormal set then

(2.1) Hn = [e1, e2, . . . , en], n = 1, 2, . . .

defines a filtration of H which is proper iff {en} is an orthonormal basis. If, on the
other hand, we are given a bilateral orthonormal basis {en : n = 0,±1,±2, . . . } for
H, then

Hn = [en, e−n+1, . . . , en]

defines a proper filtration in which the dimensions increase in jumps of 2. Moreover,
there is a natural improper filtration associated with such a bilateral basis, namely
F+ = {H+

1 ⊆ H+
2 ⊆ . . . } where

H+
n = [e0, e1, . . . , en], n = 1, 2, . . . .

The spaces H+
n span a proper subspace H+ of H. This example of an improper

filtration is associated with ‘unilateral’ sections. That is to say, the matrix of any
operator A ∈ B(H) relative to the basis {en : n ∈ Z} is a doubly infinite matrix
(aij), whereas the matrix of the compression

P+A �H+

is a singly infinite submatrix of (aij). While these are the main examples of filtra-
tions for our purposes here, filtrations in general are allowed to have very irregular
jumps in dimension.

Given any filtration F = {Hn : n ≥ 1} of H, we introduce the notion of degree
of an operator (relative to F) as follows.

Definition 2.2. The degree of A ∈ B(H) is defined by

deg(A) = sup
n

rank(PnA − APn).

The degree of an operator can be any nonnegative integer or +∞, and it is clear
that deg(A) = deg(A∗). Operators of finite degree are an abstraction of band-
limited matrices. For example, suppose we have a proper filtration arising from an
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orthonormal basis as in 2.1. If the matrix (aij) of an operator A ∈ B(H) relative
to this basis satisfies

aij = 0 when |i − j| > k,

then deg(A) ≤ k. The degree function has a number of natural properties, the most
notable being

deg(AB) ≤ deg(A) + deg(B).

The set of all operators of finite degree is a unital ∗-subalgebra of B(H) which is
dense in the strong operator topology [3].

There is a somewhat larger ∗-algebra of operators that one can associate to a
filtration F . This is a Banach ∗-algebra relative to a new norm, and it plays a key
role in the results to follow. This Banach algebra is defined as follows. Suppose
that an operator A ∈ B(H) can be decomposed into an infinite sum of finite degree
operators

(2.3) A = A1 + A2 + . . .

where the sequence An satisfies the condition

(2.4) s =
∞∑

n=1

(1 + deg(An)1/2)‖An‖ < ∞.

Notice that the sum indicated in 2.3 is absolutely convergent in the operator norm
since 2.4 implies

∞∑
n=1

‖An‖ ≤ s < ∞.

We define |A|F to be the infimum of all numbers s associated with decompositions
of A of this kind. If A cannot be so decomposed then |A|F is defined as +∞. We
define

DF = {A ∈ B(H) : |A|F < ∞}.
(DF , | · |F ) is a unital Banach algebra which contains all finite degree operators,
and the operator adjoint defines an isometric involution in DF . The two norms
currently in view are related by

‖A‖ ≤ |A|F .

While it is not so easy to calculate the norm in DF , it is usually very easy to
obtain effective estimates. For example, let F be a proper filtration associated with
a unilateral orthonormal basis as in 2.1, let A be an operator on H and let (aij) be
the matrix of A relative to this basis. Letting

dk = sup
i

|ai,i+k|

denote the supnorm of the kth diagonal, k = 0,±1,±2, . . . , then we have

|A|F ≤
+∞∑

k=−∞
(1 + (2|k|)1/2)dk.
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See [3]. Thus, A will belong to DF whenever the diagonals of (aij) die out fast
enough so that

+∞∑
−∞

|k|1/2dk < ∞.

We now indicate the role of the Banach algebra DF in computing spectra. Let
A ∈ B(H) be a self adjoint operator and consider the sequence of matrices An

obtained by compressing A along the filtration F = {H1 ⊆ H2 ⊆ . . . }:

An = PnA �Hn
.

We are interested in certain asymptotic quantities that can be computed (at least
in principle) from the sequence of finite dimensional spectra σ(A1), σ(A2), . . . . The
simplest one is the set Λ, which consists of all real numbers with the property that
there is a sequence of eigenvalues λn ∈ σ(An), n = 1, 2, . . . such that

lim
n→∞

λn = λ.

Λ is in some sense the set of limit points of the sequence of sets σ(A1), σ(A2), . . . .
Notice however that Λ is smaller than the topological limit superior of sets because
limits along subsequences of σ(A1), σ(A2), . . . do not qualify for membership in Λ.
It is easy to see that Λ is closed, and in general Λ contains the spectrum of A [3].
In particular, Λ is never empty. The points of Λ are classified as follows.

For every subset S ⊆ R and every n = 1, 2, . . . we write Nn(S) for the number of
eigenvalues of An which belong to S...and of course one counts multiple eigenvalues
according to their multiplicity.

Definition 2.5. A real number λ is called a transient point if there is an open set
U containing λ such that

sup
n≥1

Nn(U) ≤ M < ∞.

λ is called an essential point if for every open set U containing λ we have

lim
n→∞

Nn(U) = ∞.

Remarks. With every transient point λ of Λ there is an associated pair of positive
integers p ≤ q with the property that for every sufficiently small neighborhood U
of λ one has the behavior

p ≤ Nk(U) ≤ q

for large enough k ≥ n = nU , and moreover both extreme values p and q are taken
on infinitely many times by the sequence N1(U), N2(U), . . . .

The set of all essential points is a subset of Λ which we denote by Λe. Again,
it can be seen that Λe is a closed set which contains the essential spectrum of A
[3]. At this level of generality, there does not appear to be much more that one
can say. For instance, there are examples which show that the both inclusions
σ(A) ⊆ Λ and σe(A) ⊆ Λe can be proper (see the appendix of [3]). Other examples
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show that Λ can contain points which are neither essential nor transient; for every
small neighborhood U of such a point one can find subsequences n1 < n2 < . . .
for which the sequence of positive integers Nn1(U), Nn2(U), . . . stays bounded, and
other subsequences m1 < m2 . . . such that Nmk

(U) → ∞ as k → ∞. Fortunately,
the following result implies that in the reasonable cases we will not find this kind
of instability.

We can now state our main general result, which shows how one must choose a
filtration in order to compute the essential spectrum of a self adjoint operator.

Theorem 2.6. Let F be a proper filtration and let A be a self adjoint operator
which belongs to the Banach ∗-algebra DF . Then Λe coincides with the essential
spectrum of A. Moreover, every point of Λ is either transient or essential.

Remarks. In the following section we will encounter tridiagonal operators A which
are defined in terms of a bilateral orthonormal basis {en : n = 0,±1,±2, . . . } by

(2.7) Aen = en−1 + dnen + en+1,

where dn represents a bounded sequence of reals. Theorem 2.6 shows how the
essential spectrum of A can be computed in terms of the eigenvalue distributions
of the sequence of (2n + 1) × (2n + 1) matrices obtained by compressing A along
the sequence of subspaces Hn = [e−n, e−n+1, . . . , en−1, en], n = 1, 2, . . . . While
Theorem 2.6 says nothing about rates of convergence, our experience with the
operators of section 4 has shown that convergence is rapid; in fact, it is fast enough
to allow the construction of excellent pictures of σe(A) on desktop computers in a
minute or two [4]. Nevertheless, there remains an important problem of obtaining
an appropriate definition of the “rate” of convergence of such approximations, and
the estimation of this rate. The paper [3] does not address these issues of error
definition and estimation.

In carrying out computations, it is usually more convenient to deal not with
the above “bilateral” sections An but with smaller “unilateral” sections. More
precisely, these are defined in terms of an improper filtration {H+

1 ⊆ H+
2 ⊆ . . . },

H+
n = [e1, e2, . . . , en], and the corresponding compressions of the operator A

A+
n = P+

n A �H+
n

,

P+
n denoting the projection onto H+

n . Since the filtration {H+
n } is improper, Theo-

rem 2.6 does not allow one to draw conclusions about the essential spectrum of A,
but rather the essential spectrum of the operator A+ obtained by compressing A
to the subspace H+ generated by ∪nH+

n . Thus there remains a significant problem
of relating the essential spectrum of A to that of A+. These issues will be taken up
in section 4 below.

3. Discretized Schrödinger operators. In this section we will indicate how
a one-dimensional quantum system should be discretized in order to carry out
numerical computations. We will find that the “discretized” canonical commutation
relations generate a C∗-algebra which is isomorphic to one of the noncommutative
spheres of Bratteli, Elliott, Evans and Kishimoto (with parameter related to the
numerical step size), and we will find that the resulting discretized Hamiltonian is
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a bounded self-adjoint operator which is amenable to the methods of the preceding
section.

Most one-dimensional quantum systems are modelled on the Hilbert space L2(R).
The canonical operators are the unbounded self-adjoint operators P, Q defined on
appropriate domains in L2(R) by

P =
1
i

d

dx
,(3.1)

Q = Multiplication by x.

They obey the canonical commutation relations on an appropriate common domain

PQ − QP =
1
i
1.

The time development of the system is described by a one-parameter unitary group
of the form

Wt = eitH , t ∈ R,

where H is the Hamiltonian of the system

(3.2) H =
1
2
P 2 + φ(Q),

φ being a real-valued continuous function of a real variable which represents the
potential of the classical system being quantized.

In order to carry out numerical computations one first has to replace the differ-
ential operator H with an appropriately discretized version of itself. Moreover, one
has to decide how this should be done so as to conform with the basic principles
of numerical analysis while at the same time preserving the essential features of
quantum mechanics (i.e., the uncertainty principle). In [1] we presented arguments
which we believe justify the following procedure.

One first settles on a numerical step size σ. This can be regarded as a small pos-
itive rational number, whose size represents the smallest time increment to be used
in the difference equations that replace differential equations. One then discretizes
both operators P and Q, and finally uses the formula 3.2 to define the corresponding
discretized version of the Hamiltonian.

In more detail, we replace the differential operator P with the bounded self-
adjoint difference operator Pσ defined by

Pσf(x) =
f(x + σ) − f(x − σ)

2iσ
, x ∈ R.

Noting that the one-parameter group of translations Vtf(x) = f(x+ t) is generated
by P in the sense that Vt = eitP , t ∈ R, we have

Pσ =
1

2iσ
(eiσP − e−iσP ) =

1
σ

sin(σP ).

Now we must discretize Q but we must be careful to do it in a way that preserves
the uncertainty principle insofar as that is possible. In section 3 of [1], we argued



8 WILLIAM ARVESON

that this requirement imposes a very strong restriction on the possible choices for
the discretized Q, and that in fact the only “correct” choice is given by

Qσ =
1

2iσ
(eiσQ − e−iσQ) =

1
σ

sin(σQ).

More explicitly, we have

Qσf(x) =
1
σ

sin(σx)f(x), x ∈ R, f ∈ L2(R).

The resulting discretized Hamiltonian is then defined as follows:

(3.3) Hσ =
1
2
P 2

σ + V (Qσ).

Once we have the operator Hσ we are in position to carry out numerical com-
putations with the quantum system. For example, if the system is described at
time t by a wave function f ∈ L2(R) then the state of the system at time t + ∆t is
approximated by the wave function

g = (1 + i∆tHσ)f = f + i∆tHσf.

We caution the reader that, while the preceding formula is convenient for illus-
trating one way to make use of the discretized Hamiltonian, it must be modified
appropriately in order to correctly model the dymanical group in practice because
the operator f 
→ g is not unitary. Readers interested in carrying out numerical
computations can find a discussion of closely related issues in [14, pp 662–663].

Let Dσ be the C∗-algebra generated by the set of operators {Pσ, Qσ}. Dσ is the
norm-closed linear span of all finite products of terms involving either Pσ or Qσ. It
is not obvious that Dσ contains the identity operator but that is the case. Dσ is the
discretized counterpart of the algebra of observables, and notice that it contains
the operator Hσ. Thus it is important to understand the structure of Dσ.

In fact, Dσ is a simple unital C∗-algebra which is isomorphic to one of the
non-commutative spheres of Bratteli et al [9, 10, 11]. Moreover, while the oper-

ators Pσ, Qσ no longer satisfy the canonical commutation relations, they do obey a
more subtle discretized form of the CCRs, and more generally it is the universal C∗-
algebra associated with these “discretized” CCRs that is naturally associated with
the non-commutative spheres. The reader is referred to [2] for a detailed discussion
of these and related issues.

In particular, if one is interested in computing the spectrum of Hσ then one is
free to choose any convenient representation of Dσ and compute the spectrum of
Hσ in that representation. Since Dσ is simple, the spectrum does not depend on
the representation chosen. Actually, the most convenient realization of Hσ is one
in which it is a tridiagonal operator. In this case, it is more appropriate to work
with a subalgebra of Dσ which contains Hσ. The precise statement follows.
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Proposition 3.4. Let A be the C∗-algebra generated by P 2
σ and Qσ, and let K be

a Hilbert space spanned by a bilateral orthonormal set {en : n ∈ Z}. Then there is
a faithful representation π : A → B(K) such that π(Hσ) has the form

(3.5) π(Hσ) = aT + b1

where a = 1/8σ2, b = −1/4σ2, and T is the tridiagonal operator

(3.6) Ten = en−1 + 8σ2φ(
1
σ

sin(2nσ))en + en+1,

n = 0,±1,±2, . . . .

proof. Consider the unitary operators U , V defined by

Uf(x) = eiσxf(x)

V f(x) = f(x + σ).

Then

Pσ =
1

2iσ
(V − V −1),

Qσ =
1

2iσ
(U − U−1),

and notice that
P 2

σ = − 1
4σ2

(V 2 + V −2) +
1

2σ2
.

Let B be the C∗-algebra generated by U and V 2. Clearly A is contained in B, and
because of the commutation relation

V 2U = e2iσ2
UV 2

and the fact that σ is a positive rational number, it follows that B is an irrational
rotation C∗-algebra. We will define a representation π1 of B on K; the required
representation of A is obtained by restriction.

In order to specify a representation of B on K, it is sufficient to specify a pair
of unitary operators S, D on K satisfying

(3.7) SD = e2iσ2
DS.

π1 is then uniquely defined by specifying that π1(V 2) = S, π1(U) = D. Let

Sen = −en−1,

Den = e2inσ2
en

n = 0,±1,±2, . . . . Clearly S and D are unitary operators and the reader can verify
3.7 directly. Hence there is a representation π1 of B with the stated properties.
Noting that

π1(P 2
σ ) = π1(−

1
4σ2

(V 2 + V −2) +
1

2σ2
1)

= − 1
4σ2

S − 1
4σ2

S−1 +
1

2σ2
1
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and that π1(Qσ) is the diagonal operator

π1(Qσ)en =
1

2iσ
(e2inσ2 − e−2inσ2

)en =
1
σ

sin(2nσ2)en,

we may conclude that

π1(φ(Qσ))en = φ(
1
σ

sin(2nσ2))en

for every n = 0,±1,±2, . . . . Combining these two formulas, we find that the image
of Hσ is given by

π1(Hσ) =
1
2
π1(P 2

σ ) + π1(φ(Qσ)),

which has the form spelled out in 3.5 and 3.6 �
Remark 3.8. Consider the diagonal sequence

dn = 8σ2φ(
1
σ

sin(2nσ2)), n ∈ Z

appearing in the formula 3.6. We want to point out that if the function φ is
continuous and not constant on the interval [− 1

σ , + 1
σ ] and if σ2 is not a rational

multiple of π, then the sequence (dn) is almost periodic but not periodic. Indeed,
the sequence n 
→ sin(2nσ2) is almost periodic because it is a linear combination
of complex exponentials of the form eiαn where α is a real number. Since the set
of all almost periodic sequences form a commutative C∗-algebra it is closed under
the continuous functional calculus, and therefore the sequence (dn) must be almost
periodic. Note too that (dn) cannot be periodic. For if there did exist integers
p ≥ 1 and n such that

dn+kp = dn, k = 0,±1,±2, . . .

then since σ2 is not a rational multiple of π the numbers

sin(2nσ2 + 2kpσ2), k ∈ Z

would fill out a dense set in the interval [−1, +1], and hence φ would have to be
constant on the interval [− 1

σ , + 1
σ ].

The material presented in this section leads toward a significant conclusion. The
problem of computing the spectrum of the discretized Hamiltonian of a one dimen-
sional quantum system can be reduced to the problem of computing the spectrum of
a self-adjoint tridiagonal operator of the form

(3.9) Ten = en−1 + dnen + en+1, n ∈ Z

where {dn : n ∈ Z} is a bounded almost periodic sequence of reals which is not
periodic. For such operators one can work with either unilateral sections or bilateral
sections, as we will see in the following section. For example, if for n ≥ 1 we let Tn

be the compression of T onto the linear span of {e1, e2, . . . , en} then even though we
are in effect working with an improper filtration, one may apply a suitable variation
of Theorem 2.6 to conclude that the spectrum of T is the set of all essential points
associated with the sequence of self-adjoint matrices T1, T2, . . . .

In the following section, we will obtain more precise information about the dis-
tribution of the eigenvalues of the sequence Tn, n = 1, 2, . . . .
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4. Limits, simple C∗-algebras, and traces. Let (dn)n∈Z be a bounded almost
periodic sequence of reals which is not periodic and let T be the tridiagonal operator
of 3.9

(4.1) Ten = en−1 + dnen + en+1, n ∈ Z,

{en : n ∈ Z} being an orthonormal basis for a Hilbert space H. We will show that
the eigenvalue distributions of the n × n sections of T actually converge (in the
weak∗ topology of measures on the real line) to a probability measure µT . Thus it
becomes important to understand the nature of this limiting measure µT . We show
that µT is associated with a tracial state on a certain C∗-algebra AT associated with
T . AT certainly contains T but it is much larger than the C∗-algebra generated by
T ; indeed, AT is a simple C∗-algebra having a unique tracial state.

Let S be the bilateral shift defined on H by

Sen = en+1 n ∈ Z

and let D be the diagonal operator associated with the sequence (dn),

Den = dnen, n ∈ Z.

AT is defined as the C∗-algebra generated by both operators D and S. AT is a
separable unital C∗-algebra which contains T , and of course AT depends on the
particular choice of diagonal sequence (dn). When T is a discretized Hamiltonian
as in the previous section, AT will depend on both the numerical step size σ and
the potential φ. Nevertheless, in all cases we have

Theorem 4.2. AT is a simple unital C∗-algebra-subalgebra of B(H) which has a
unique tracial state.

Remark. A tracial state of AT is a linear functional τ : AT → C satisfying

τ(X∗X) ≥ 0, and

τ(XY ) = τ(Y X)

for every X, Y ∈ AT , and which is normalized so that τ(1) = 1. Theorem 4.2 is
proved in proposition 3.2 of [5].

More generally, suppose we are given an arbitrary concrete C∗-algebra A ⊆
B(H). We need to single out the filtrations that are “compatible” with A. Let
F = {H1 ⊆ H2 ⊆ . . . } be a filtration of H which may be improper, and put

H+ = ∪nHn.

As in section 2 we may speak of the degree of an operator X ∈ B(H) relative to
the filtration F . Following [3], we say that F is an A-filtration if the set of finite
degree operators which belong to A is norm-dense in A.

In connection with the operators T of 4.1, we will consider the filtration FT =
{Hn} where Hn = [e1, e2, . . . , en]. This is an improper filtration for which

H+ = [e1, e2, . . . ].

More significantly, we have
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Proposition 4.3. FT is an AT -filtration.

4.3 is a simple consequence of the fact that the finite degree operators in AT

form a of AT , and that the operators D and S have respective degrees 0 and 1 (see
the proof of Theorem 3.4 of [5]). For every n ≥ 1 let Tn be the compression of T
to Hn. Relative to the obvious basis for Hn, the matrix of Tn is

d1 1 0 . . . 0 0
1 d2 1 . . . 0 0
0 1 d3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . dn−1 1
0 0 0 . . . 1 dn

 .

There are two issues that need to be understood. The first has to do with the
relation between operators in AT and their compressions to H+; the second requires
relating the trace on AT to the limit of the eigenvalue distributions of the sequence
of matrices T1, T2, . . . .

In order to discuss the first of these, we consider a more general setting in
which we are given a unital C∗-algebra A ⊆ B(H) and an improper filtration
{H1 ⊆ H2 ⊆ . . . }. We will consider the space A+ of all operators on H+ having
the form

P+A �H+ +K,

where A ∈ A and K is a compact operator on H+, P+ denoting the projection on
H+. We will write K+ for the algebra of all compact operators on H+.

Theorem 4.4. Assume that A has a unique tracial state τ , let {H1 ⊆ H2 ⊆ . . . }
be an A-filtration and assume that H+ has the following property

(4.5) A �H+= compact =⇒ A = compact

for every operator A ∈ A. Then A+ is a C∗-algebra containing K+ which has a
unique tracial state τ+. τ+ is related to τ by way of

τ+(P+A �H+ +K) = τ(A), A ∈ A, K ∈ K+.

Moreover, the natural map of A to the quotient A+/K+ given by

A 
→ P+A �H+ +K+

is an isomorphism of C∗-algebras:

A ∼= A+/K+.

Remarks. The argument required here can be found in the proof of Theorem 2.3
of [5]. These results depend on the following relationship that exists between the
operators in A and the projection P+ associated with an A-filtration:

A ∈ A =⇒ P+A − AP+ ∈ K
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see [5, proposition 2.1].
Theorem 4.4 implies that we have a short exact sequence of C∗-algebras

0 → K+ → A+ → A → 0.

This shows that the structure of A+ is somewhat analogous to the structure of the
Toeplitz C∗-algebra T ,

0 → K → T → C(T) → 0,

except that in our applications the quotient C∗-algebras AT are highly noncommu-
tative.

Finally, we remark that the hypothesis 4.5 is satisfied for our examples AT

because AT is a simple C∗-algebra with unit and H+ is infinite dimensional (see
the proof of Theorem 3.4 of [5]).

Now we can define the measure µT alluded to at the beginning of this section.
Let τ be the unique tracial state of AT . Using the functional calculus for bounded
self-adjoint operators, we can define a positive linear functional on C0(R) by

f ∈ C0(R) 
→ τ(f(T )).

By the Riesz-Markov theorem, there is a unique positive measure µT on R such
that ∫ +∞

−∞
f(x) dµT (x) = τ(f(T )), f ∈ C0(R).

µT is obviously a probability measure whose support is contained in the spectrum
of T . µT is called the spectral distribution of T . Because AT is simple τ must be a
faithful trace, and hence the closed support of µT is exactly the spectrum of T .

The preceding discussion, together with the general results of [3, section 4] can
be applied to obtain the following result, which is Theorem 3.4 of [5].

Theorem 4.6. For every positive integer n let λn
1 < λn

2 < · · · < λn
n be the eigen-

value list of the symmetric n × n matrix

(4.7)



d1 1 0 . . . 0 0
1 d2 1 . . . 0 0
0 1 d3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . dn−1 1
0 0 0 . . . 1 dn

 .

Then for every f ∈ C0(R) we have

lim
n→∞

1
n

(f(λn
1 ) + f(λn

2 ) + . . . ,+f(λn
n)) =

∫ +∞

−∞
f(x) dµT (x).

Remarks. Theorems 4.6 and 2.6 together provide rather precise information about
the rate at which the eigenvalues of the matrices 4.7 accumulate at points in and
out of the spectrum of T . For example, let λ ∈ σ(T ) and let I be an open interval
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containing λ. Then µT (I) > 0, and if α and β are chosen close to µT (I) in such a
way that α < µT (I) < β, then the number Nn(I) of eigenvalues of Tn which belong
to I will satisfy the inequalities

αn ≤ Nn(I) ≤ βn

for all sufficiently large n.
For the operators T of 4.1, it is not hard to show that the essential spectrum

of T is identical with σ(T ). Thus we can apply Theorem 2.6 above to conclude
that if λ does not belong to σ(T ) then for every sufficiently small open interval
containing λ, the sequence of numbers N1(I), N2(I), . . . actually remains bounded.
This behavior is quite visible in the pictures generated by the program [4].

Some additional remarks relating to computational issues can be found in the
concluding paragraphs of [5].
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