Starting with a unit-preserving normal completely positive map L: M --> M acting on a von Neumann algebra - or more generally a dual operator system - we show that there is a unique reversible system \alpha: N --> N (i.e., a complete order automorphism \alpha of a dual operator system N) that captures all of the asymptotic behavior of L, called the {\em asymptotic lift} of L. This provides a noncommutative generalization of the Frobenius theorems that describe the asymptotic behavior of the sequence of powers of a stochastic n x n matrix. In cases where M is a von Neumann algebra, the asymptotic lift is shown to be a W*-dynamical system (N,\mathbb Z), which we identify as the tail flow of the minimal dilation of L. We also identify the Poisson boundary of L as the fixed algebra of (N,\mathbb Z). In general, we show the action of the asymptotic lift is trivial iff L is {\em slowly oscillating} in the sense that $$ \lim_{n\to\infty}\|\rho\circ L^{n+1}-\rho\circ L^n\|=0,\qquad \rho\in M_* . $$ Hence \alpha is often a nontrivial automorphism of N.