Maximal vectors in Hilbert space and quantum entanglement

William Arveson
arveson@math.berkeley.edu

UC Berkeley

Summer 2008

arXiv:0712.4163
arXiv:0801.2531
• arXiv:0804.1140
Overview

Quantum Information Theory is quantum mechanics in matrix algebras - the algebras $\mathcal{B}(H)$ with H finite dimensional. I’ll stay in that context for this talk; but much of the following discussion generalizes naturally to infinite dimensional Hilbert spaces.

We discuss separability of states, entanglement of states, and propose a numerical measure of entanglement in an abstract context. Then we apply that to compute maximally entangled vectors and states of tensor products $H = H_1 \otimes \cdots \otimes H_N$.

Not discussed: the physics of entanglement, how/why it is a resource for quantum computing, the EPR paradox, Bell’s inequalities, Alice and Bob, channels, qubits, philosophy.
Overview

Quantum Information Theory is quantum mechanics in matrix algebras - the algebras $\mathcal{B}(H)$ with H finite dimensional. I’ll stay in that context for this talk; but much of the following discussion generalizes naturally to infinite dimensional Hilbert spaces.

We discuss separability of states, entanglement of states, and propose a numerical measure of entanglement in an abstract context. Then we apply that to compute maximally entangled vectors and states of tensor products $H = H_1 \otimes \cdots \otimes H_N$.

Not discussed: the physics of entanglement, how/why it is a resource for quantum computing, the EPR paradox, Bell’s inequalities, Alice and Bob, channels, qubits, philosophy.
Quantum Information Theory is quantum mechanics in matrix algebras - the algebras $\mathcal{B}(H)$ with H finite dimensional. I’ll stay in that context for this talk; but much of the following discussion generalizes naturally to infinite dimensional Hilbert spaces.

We discuss *separability* of states, *entanglement* of states, and propose a numerical measure of entanglement in an abstract context. Then we apply that to compute maximally entangled vectors and states of tensor products $H = H_1 \otimes \cdots \otimes H_N$.

Not discussed: the physics of entanglement, how/why it is a resource for quantum computing, the EPR paradox, Bell’s inequalities, Alice and Bob, channels, qubits, philosophy.
Separable states, entangled states

Consider states of a “composite” quantum system

\[\mathcal{B}(H_1 \otimes \cdots \otimes H_N) \cong \mathcal{B}(H_1) \otimes \cdots \otimes \mathcal{B}(H_N), \quad N = 2, 3, \ldots. \]

A state \(\rho \) of \(\mathcal{B}(H_1 \otimes \cdots \otimes H_N) \) is said to be \textit{separable} if it is a convex combination of product states \(\sigma_1 \otimes \cdots \otimes \sigma_N \)

\[\rho(A_1 \otimes \cdots \otimes A_N) = \sum_{k=1}^{s} t_k \cdot \sigma_1^k(A_1) \cdots \sigma_N^k(A_N), \]

with positive \(t_k \) summing to 1.

An \textit{entangled} state is one that is not separable. We will see examples shortly.
Entanglement is a noncommutative phenomenon

For commutative tensor products

\[A = C(X_1) \otimes \cdots \otimes C(X_N) = C(X_1 \times \cdots \times X_n) \]

\(X_1, \ldots, X_N\) being finite sets, every state of \(A\) is a convex combination of pure states, pure states correspond to points of \(X_1 \times \cdots \times X_N\), and point masses are pure product states.

Hence every state is a convex combination of product states, and entangled states do not exist.

- The existence of entangled states reflects the fact that observables are operators, not functions, and operator multiplication is not commutative.
Entanglement is a noncommutative phenomenon

For commutative tensor products

\[A = C(X_1) \otimes \cdots \otimes C(X_N) = C(X_1 \times \cdots \times X_N) \]

\(X_1, \ldots, X_N\) being finite sets, every state of \(A\) is a convex combination of pure states, pure states correspond to points of \(X_1 \times \cdots \times X_N\), and point masses are pure product states.

Hence every state is a convex combination of product states, and entangled states do not exist.

- The existence of entangled states reflects the fact that observables are operators, not functions, and operator multiplication is not commutative.
Entangled pure states

- Factoid: for every unit vector $\xi \in H_1 \otimes \cdots \otimes H_N$, the pure state $\rho(A) = \langle A\xi, \xi \rangle$, $A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_N)$ is separable iff $\xi = \xi_1 \otimes \cdots \otimes \xi_N$, for some $\xi_k \in H_k$, $1 \leq k \leq N$.

So a vector in the unit sphere $S = \{\xi \in H : \|\xi\| = 1\}$ gives an entangled pure state iff it is not decomposable. Such vectors are generic in two senses: they are a dense open subset of S, and they are a set whose complement has measure zero.

- The situation for mixed states is not so simple. For example, entangled states are not generic; they are not even dense in the state space.
Entangled pure states

- Factoid: for every unit vector $\xi \in H_1 \otimes \cdots \otimes H_N$, the pure state
 \[\rho(A) = \langle A\xi, \xi \rangle, \quad A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_N) \]
is separable iff $\xi = \xi_1 \otimes \cdots \otimes \xi_N$, for some $\xi_k \in H_k$, $1 \leq k \leq N$.

So a vector in the unit sphere $S = \{\xi \in H : \|\xi\| = 1\}$ gives an entangled pure state iff it is *not* decomposable. Such vectors are generic in two senses: they are a dense open subset of S, and they are a set whose complement has measure zero.

- The situation for mixed states is not so simple. For example, entangled states are *not* generic; they are not even dense in the state space.
Entangled pure states

- Factoid: for every unit vector $\xi \in H_1 \otimes \cdots \otimes H_N$, the pure state
 \[\rho(A) = \langle A\xi, \xi \rangle, \quad A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_N) \]
 is separable iff $\xi = \xi_1 \otimes \cdots \otimes \xi_N$, for some $\xi_k \in H_k$, $1 \leq k \leq N$.

So a vector in the unit sphere $S = \{\xi \in H : \|\xi\| = 1\}$ gives an entangled pure state iff it is not decomposable. Such vectors are generic in two senses: they are a dense open subset of S, and they are a set whose complement has measure zero.

- The situation for mixed states is not so simple. For example, entangled states are not generic; they are not even dense in the state space.
Examples in the “bipartite” case $N = 2$

Choose a unit vector $\zeta \in H_1 \otimes H_2$ that does not decompose into a tensor product $\xi_1 \otimes \xi_2$, and define

$$\alpha = \sup_{\|\xi_1\| = \|\xi_2\| = 1} |\langle \zeta, \xi_1 \otimes \xi_2 \rangle|^2.$$

Easy to see that the self-adjoint operator

$$A = \alpha \cdot 1 - \zeta \otimes \bar{\zeta}$$

has the property $(\sigma_1 \otimes \sigma_2)(A) \geq 0$ for every product state $\sigma_1 \otimes \sigma_2$ and hence $\rho(A) \geq 0$ for every separable state ρ.

But the choice of ζ implies that $\alpha < 1$, hence the operator A is not positive.

• Conclusion: Every state ρ such that $\rho(A) < 0$ is entangled.
Examples in the “bipartite” case $N = 2$

Choose a unit vector $\zeta \in H_1 \otimes H_2$ that does not decompose into a tensor product $\xi_1 \otimes \xi_2$, and define

$$\alpha = \sup_{\|\xi_1\| = \|\xi_2\| = 1} |\langle \zeta, \xi_1 \otimes \xi_2 \rangle|^2.$$

Easy to see that the self-adjoint operator

$$A = \alpha \cdot 1 - \zeta \otimes \bar{\zeta}$$

has the property $(\sigma_1 \otimes \sigma_2)(A) \geq 0$ for every product state $\sigma_1 \otimes \sigma_2$ and hence $\rho(A) \geq 0$ for every separable state ρ.

But the choice of ζ implies that $\alpha < 1$, hence the operator A is not positive.

- Conclusion: Every state ρ such that $\rho(A) < 0$ is entangled.
What are maximally entangled pure states?

The term “maximally entangled pure state" occurs frequently in the physics literature, and several “measures of entanglement" have been proposed in the bipartite case $H = H_1 \otimes H_2$. For example, when $H_1 = H_2$, everyone agrees that

$$\frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n)$$

is a maximally entangled unit vector (here, (e_k) and (f_k) are orthonormal bases for $H_1 = H_2$).

But despite the attention it receives, in the multipartite case $H = H_1 \otimes \cdots \otimes H_N$ with $N \geq 3$, there does not seem to be general agreement about what properties a maximally entangled vector should have.

One needs a definition to do mathematics....
What are **maximally** entangled pure states?

The term “maximally entangled pure state” occurs frequently in the physics literature, and several “measures of entanglement” have been proposed in the bipartite case $H = H_1 \otimes H_2$. For example, when $H_1 = H_2$, everyone agrees that

$$\frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n)$$

is a maximally entangled unit vector (here, (e_k) and (f_k) are orthonormal bases for $H_1 = H_2$).

But despite the attention it receives, in the multipartite case $H = H_1 \otimes \cdots \otimes H_N$ with $N \geq 3$, there does not seem to be general agreement about what properties a maximally entangled vector should have.

One needs a *definition* to do mathematics....
What are maximally entangled pure states?

The term “maximally entangled pure state" occurs frequently in the physics literature, and several “measures of entanglement" have been proposed in the bipartite case $H = H_1 \otimes H_2$. For example, when $H_1 = H_2$, everyone agrees that

$$\frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n)$$

is a maximally entangled unit vector (here, (e_k) and (f_k) are orthonormal bases for $H_1 = H_2$).

But despite the attention it receives, in the multipartite case $H = H_1 \otimes \cdots \otimes H_N$ with $N \geq 3$, there does not seem to be general agreement about what properties a maximally entangled vector should have.

One needs a definition to do mathematics....
Aside: the case \(N = 2 \) is too special

- The case \(H = H_1 \otimes H_2 \) has special features that are not available for higher order tensor products.

That is because vectors in \(H_1 \otimes H_2 \) can be identified with Hilbert Schmidt operators \(A : H_1 \rightarrow H_2 \), so one can access operator-theoretic invariants to analyze vectors.

Example: Using the singular value list of the operator that corresponds to a unit vector \(\xi \in H_1 \otimes H_2 \), it follows that there are orthonormal sets \((e_k) \) in \(H_1 \) and \((f_k) \) in \(H_2 \) and a set of nonnegative numbers \(p_1, \ldots, p_n \) with sum 1 such that

\[
\xi = \sqrt{p_1} \cdot e_1 \otimes f_1 + \cdots + \sqrt{p_n} \cdot e_n \otimes f_n
\]

Physicists call this the Schmidt decomposition of \(\xi \).
Aside: the case $N = 2$ is too special

- The case $H = H_1 \otimes H_2$ has special features that are not available for higher order tensor products.

That is because vectors in $H_1 \otimes H_2$ can be identified with Hilbert Schmidt operators $A : H_1 \rightarrow H_2$, so one can access operator-theoretic invariants to analyze vectors.

Example: Using the singular value list of the operator that corresponds to a unit vector $\xi \in H_1 \otimes H_2$, it follows that there are orthonormal sets (e_k) in H_1 and (f_k) in H_2 and a set of nonnegative numbers p_1, \ldots, p_n with sum 1 such that

$$\xi = \sqrt{p_1} \cdot e_1 \otimes f_1 + \cdots + \sqrt{p_n} \cdot e_n \otimes f_n$$

Physicists call this the *Schmidt decomposition* of ξ.
$N = 3$ is more typical

In the case $H = H_1 \otimes H_2 \otimes H_3$, one can stubbornly identify vectors in H with various Hilbert Schmidt operators, e.g.,

$$A : H_1 \rightarrow H_2 \otimes H_3, \text{ or}$$

$$B : H_2 \rightarrow H_1 \otimes H_3, \text{ or}$$

$$C : H_3 \rightarrow H_1 \otimes H_2.$$

Which one should we use? Maybe use the triple (A, B, C)? Unfortunately, triples don’t have singular value lists.

The cases $N > 3$ don’t get easier....

I propose giving up the idea of generalizing the “Schmidt decomposition" and starting over from scratch.
$N = 3$ is more typical

In the case $H = H_1 \otimes H_2 \otimes H_3$, one can stubbornly identify vectors in H with various Hilbert Schmidt operators, e.g.,

\[
A : H_1 \rightarrow H_2 \otimes H_3, \quad \text{or} \\
B : H_2 \rightarrow H_1 \otimes H_3, \quad \text{or} \\
C : H_3 \rightarrow H_1 \otimes H_2.
\]

Which one should we use? Maybe use the triple (A, B, C)? Unfortunately, triples don’t have singular value lists.

The cases $N > 3$ don’t get easier....

I propose giving up the idea of generalizing the “Schmidt decomposition” and starting over from scratch.
Entanglement pairs \((H, V)\)

We will work with pairs \((H, V)\) consisting of a Hilbert space \(H\) and a norm-closed set \(V\) of unit vectors in \(H\) such that:

\[V1: \; \lambda \cdot V \subseteq V \text{ for every } \lambda \in \mathbb{C}, \; |\lambda| = 1. \]

\[V2: \; H \text{ is the closed linear span of } V. \]

Motivating example: a Hilbert space \(H = H_1 \otimes \cdots \otimes H_N\) presented as an \(N\)-fold tensor product of Hilbert spaces \(H_k\), where \(V\) is the set of all decomposable unit vectors

\[
V = \{ \xi_1 \otimes \cdots \otimes \xi_N : \xi_k \in H_k, \; \|\xi_1\| = \cdots = \|\xi_N\| = 1 \}.
\]

Of course there are lots of other examples of entanglement pairs, many/most of which have nothing to do with physics.
Entanglement pairs \((H, V)\)

We will work with pairs \((H, V)\) consisting of a Hilbert space \(H\) and a norm-closed set \(V\) of unit vectors in \(H\) such that:

1. \(\lambda \cdot V \subseteq V\) for every \(\lambda \in \mathbb{C}\), \(|\lambda| = 1\).
2. \(H\) is the closed linear span of \(V\).

Motivating example: a Hilbert space \(H = H_1 \otimes \cdots \otimes H_N\) presented as an \(N\)-fold tensor product of Hilbert spaces \(H_k\), where \(V\) is the set of all decomposable unit vectors

\[
V = \{\xi_1 \otimes \cdots \otimes \xi_N : \xi_k \in H_k, \|\xi_1\| = \cdots = \|\xi_N\| = 1\}.
\]

Of course there are lots of other examples of entanglement pairs, many/most of which have nothing to do with physics.
Fix an entanglement pair \((H, V)\).

- By a maximal vector we mean a unit vector \(\xi \in H\) whose distance to \(V\) is maximum:

\[
d(\xi, V) = \max_{\|\eta\|=1} d(\eta, V),
\]

\(d(\xi, V)\) denoting the distance from \(\xi\) to \(V\).

If \(H\) is finite dimensional, then maximal vectors exist; and they exist in many infinite dimensional examples as well.

Maximal vectors are at the opposite extreme from the “central vector” of \(V\) described in Jesse Peterson’s talk.
Fix an entanglement pair \((H, V)\).

- By a \textit{maximal vector} we mean a \textit{unit} vector \(\xi \in H\) whose distance to \(V\) is maximum:

\[
d(\xi, V) = \max_{\|\eta\| = 1} d(\eta, V),
\]

\(d(\xi, V)\) denoting the distance from \(\xi\) to \(V\).

If \(H\) is finite dimensional, then maximal vectors exist; and they exist in many infinite dimensional examples as well.

Maximal vectors are at the opposite extreme from the “central vector" of \(V\) described in Jesse Peterson’s talk.
Fix an entanglement pair (H, V).

- By a *maximal vector* we mean a unit vector $\xi \in H$ whose distance to V is maximum:

$$d(\xi, V) = \max_{\|\eta\|=1} d(\eta, V),$$

$d(\xi, V)$ denoting the distance from ξ to V.

If H is finite dimensional, then maximal vectors exist; and they exist in many infinite dimensional examples as well.

Maximal vectors are at the opposite extreme from the “central vector" of V described in Jesse Peterson’s talk.
The simplest examples

Take $H = \mathbb{C}^2$, choose two unit vectors $e_1, e_2 \in H$, and let

$$V = \{ \lambda e_1 : |\lambda| = 1 \} \cup \{ \lambda e_2 : |\lambda| = 1 \}.$$

Calculation shows that a unit vector $\xi \in \mathbb{C}^2$ is maximal iff

$$\max(|\langle \xi, e_1 \rangle|, |\langle \xi, e_2 \rangle|)$$

is as small as possible. So taking $e_1 = (1, 0)$, $e_2 = (0, 1)$ to be the usual basis vectors, the maximal vectors turn out to be

$$\xi = \left(\frac{\lambda}{\sqrt{2}}, \frac{\lambda}{\sqrt{2}} \right), \quad |\lambda| = 1.$$

In general, $0 \leq d(\xi, V) \leq \sqrt{2}$. Note that since V is closed,

$$d(\xi, V) = 0 \iff \xi \in V.$$
The simplest examples

Take \(H = \mathbb{C}^2 \), choose two unit vectors \(e_1, e_2 \in H \), and let

\[
V = \{ \lambda e_1 : |\lambda| = 1 \} \cup \{ \lambda e_2 : |\lambda| = 1 \}.
\]

Calculation shows that a unit vector \(\xi \in \mathbb{C}^2 \) is maximal iff

\[
\max(|\langle \xi, e_1 \rangle|, |\langle \xi, e_2 \rangle|)
\]

is as small as possible. So taking \(e_1 = (1, 0) \), \(e_2 = (0, 1) \) to be the usual basis vectors, the maximal vectors turn out to be

\[
\xi = \left(\frac{\lambda}{\sqrt{2}}, \frac{\lambda}{\sqrt{2}} \right), \quad |\lambda| = 1.
\]

In general, \(0 \leq d(\xi, V) \leq \sqrt{2} \). Note that since \(V \) is closed,

\[
d(\xi, V) = 0 \iff \xi \in V.
\]
Measuring the entanglement of vectors

For every \(\xi \in H \) we define a preliminary norm \(\| \cdot \|_V \) by

\[
\| \xi \|_V = \sup_{v \in V} \Re \langle \xi, v \rangle = \sup_{v \in V} |\langle \xi, v \rangle|.
\]

The “entanglement measuring” function from \(H \) to the extended interval \([0, +\infty]\) is defined as follows:

\[
\| \xi \|_V = \sup_{\| \eta \|_V \leq 1} \Re \langle \xi, \eta \rangle = \sup_{\| \eta \|_V \leq 1} |\langle \xi, \eta \rangle|, \quad \xi \in H.
\]

It is possible for \(\| \xi \|_V \) to be infinite (when \(\dim H = \infty \)); but otherwise, \(\| \cdot \|_V \) behaves like a norm on \(H \) such that

\[
\| \xi \|_V \geq \| \xi \|, \quad \xi \in H.
\]
Measuring the entanglement of vectors

For every $\xi \in H$ we define a preliminary norm $\| \cdot \|_V$ by

$$\| \xi \|_V = \sup_{v \in V} \Re \langle \xi, v \rangle = \sup_{v \in V} |\langle \xi, v \rangle|.$$

The “entanglement measuring” function from H to the extended interval $[0, +\infty]$ is defined as follows:

$$\| \xi \|_V = \sup_{\|\eta\|_V \leq 1} \Re \langle \xi, \eta \rangle = \sup_{\|\eta\|_V \leq 1} |\langle \xi, \eta \rangle|, \quad \xi \in H.$$

It is possible for $\| \xi \|_V$ to be infinite (when dim $H = \infty$); but otherwise, $\| \cdot \|_V$ behaves like a norm on H such that

$$\| \xi \|_V \geq \| \xi \|, \quad \xi \in H.$$
The inner radius $r(V)$

- The *inner radius* $r(V)$ is the largest $r \geq 0$ such that
 \[\{ \xi \in H : \|\xi\| \leq r \} \subseteq \text{convex hull } V. \]

In general, $0 \leq r(V) \leq 1$, and $r(V) = 1 \iff V$ is the entire unit sphere of H. More significantly for our purposes:

- If $\dim H < \infty$ then $r(V) > 0$.

Theorem: Each of the three formulas characterizes $r(V)$:

(i) $\inf_{\|\xi\|=1} \|\xi\|_V = r(V)$.

(ii) $\sup_{\|\xi\|=1} \|\xi\|_V = r(V)^{-1}$.

(iii) $\sup_{\|\xi\|=1} d(\xi, V) = \sqrt{2 - 2 \cdot r(V)}$.
The inner radius $r(V)$

- The *inner radius* $r(V)$ is the largest $r \geq 0$ such that

$$
\{ \xi \in H : \| \xi \| \leq r \} \subseteq \text{convex hull } V.
$$

In general, $0 \leq r(V) \leq 1$, and $r(V) = 1 \iff V$ is the entire unit sphere of H. More significantly for our purposes:

- If $\dim H < \infty$ then $r(V) > 0$.

Theorem: Each of the three formulas characterizes $r(V)$:

(i) $\inf_{\| \xi \|=1} \| \xi \|_V = r(V)$.

(ii) $\sup_{\| \xi \|=1} \| \xi \|_V = r(V)^{-1}$.

(iii) $\sup_{\| \xi \|=1} d(\xi, V) = \sqrt{2 - 2 \cdot r(V)}$.

Characterization of maximal vectors

Theorem: For every unit vector $\xi \in H$, the following are equivalent:

(i) $\|\xi\|_V = r(V)$ is minimum.
(ii) $\|\xi\|_V = r(V)^{-1}$ is maximum.
(iii) $d(\xi, V) = \sqrt{2 - 2 \cdot r(V)}$ - i.e., ξ is a maximal vector.

More significantly, $\| \cdot \|_V$ measures “degree of entanglement”:

Theorem: If $\dim H < \infty$, then $\| \cdot \|_V$ is a norm on H whose restriction to the unit sphere $S = \{ \xi \in H : \|\xi\| = 1 \}$ has the following properties:

(i) Range of values: $1 \leq \|\xi\|_V \leq r(V)^{-1}$.
(ii) Membership in V: $\xi \in V \iff \|\xi\|_V = 1$.
(iii) Maximal vectors: ξ is maximal $\iff \|\xi\|_V = r(V)^{-1}$.
Characterization of maximal vectors

Theorem: For every unit vector $\xi \in H$, the following are equivalent:

(i) $\|\xi\|_V = r(V)$ is minimum.

(ii) $\|\xi\|_V = r(V)^{-1}$ is maximum.

(iii) $d(\xi, V) = \sqrt{2 - 2 \cdot r(V)}$ - i.e., ξ is a maximal vector.

More significantly, $\| \cdot \|_V$ measures “degree of entanglement”:

Theorem: If $\dim H < \infty$, then $\| \cdot \|_V$ is a norm on H whose restriction to the unit sphere $S = \{\xi \in H : \|\xi\| = 1\}$ has the following properties:

(i) Range of values: $1 \leq \|\xi\|_V \leq r(V)^{-1}$.

(ii) Membership in V: $\xi \in V \iff \|\xi\|_V = 1$.

(iii) Maximal vectors: ξ is maximal $\iff \|\xi\|_V = r(V)^{-1}$.
Entanglement of mixed states

Fix \((H, V)\). A state \(\rho\) of \(\mathcal{B}(H)\) is said to be \(V\)-correlated if it is a convex combination of vector states of the form

\[\omega(A) = \langle A\xi, \xi \rangle, \quad \xi \in V. \]

A state that is not \(V\)-correlated is said to be \(V\)-entangled, or simply entangled.

We introduce a numerical measure of entanglement of states as follows. Consider the convex subset of \(\mathcal{B}(H)\)

\[\mathcal{B}_V = \{ A \in \mathcal{B}(H) : |\langle A\xi, \eta \rangle| \leq 1, \forall \xi, \eta \in V \}. \]

\(\mathcal{B}_V\) contains the unit ball of \(\mathcal{B}(H)\). For every \(\rho \in \mathcal{B}(H)'\) define

\[E(\rho) = \sup_{A \in \mathcal{B}_V} |\rho(A)|. \]
Entanglement of mixed states

Fix (H, V). A state ρ of $\mathcal{B}(H)$ is said to be V-correlated if it is a convex combination of vector states of the form

$$\omega(A) = \langle A\xi, \xi \rangle, \quad \xi \in V.$$

A state that is not V-correlated is said to be V-entangled, or simply entangled.

We introduce a numerical measure of entanglement of states as follows. Consider the convex subset of $\mathcal{B}(H)$

$$\mathcal{B}_V = \{ A \in \mathcal{B}(H) : |\langle A\xi, \eta \rangle| \leq 1, \forall \xi, \eta \in V \}.$$

\mathcal{B}_V contains the unit ball of $\mathcal{B}(H)$. For every $\rho \in \mathcal{B}(H)'$ define

$$E(\rho) = \sup_{A \in \mathcal{B}_V} |\rho(A)|.$$
Basic properties of the function E

According to the following result, the function $E(\cdot)$ faithfully detects entanglement of states. Moreover, it recaptures the entanglement norm $\|\xi\|^V$ of unit vectors $\xi \in H$.

Theorem: When $r(V) > 0$, E is a norm on $\mathcal{B}(H)'$ whose restriction to the state space behaves as follows:

(i) $1 \leq E(\rho) \leq r(V)^{-2}$, for every state ρ.

(ii) $E(\rho) = 1$ iff ρ is V-correlated.

(iii) $E(\rho) > 1$ iff ρ is entangled.

(iv) For every pure state $\omega_\xi(A) = \langle A\xi, \xi \rangle$, $A \in \mathcal{B}(H)$,

$$E(\omega_\xi) = (\|\xi\|^V)^2.$$
Basic properties of the function E

According to the following result, the function $E(\cdot)$ faithfully detects entanglement of states. Moreover, it recaptures the entanglement norm $\|\xi\|^{V}$ of unit vectors $\xi \in H$.

Theorem: When $r(V) > 0$, E is a norm on $\mathcal{B}(H)'$ whose restriction to the state space behaves as follows:

(i) $1 \leq E(\rho) \leq r(V)^{-2}$, for every state ρ.

(ii) $E(\rho) = 1$ iff ρ is V-correlated.

(iii) $E(\rho) > 1$ iff ρ is entangled.

(iv) For every pure state $\omega_\xi(A) = \langle A\xi, \xi \rangle$, $A \in \mathcal{B}(H)$,

$E(\omega_\xi) = (\|\xi\|^{V})^2$.
Maximally entangled mixed states

So the maximum possible value of $E(\cdot)$ on states is $r(V)^{-2}$. A state ρ of $\mathcal{B}(H)$ is said to be maximally entangled if

$$E(\rho) = r(V)^{-2}.$$

Theorem: The maximally entangled pure states are the vector states ω_ξ where ξ is a maximal vector.

Every maximally entangled state is a convex combination of maximally entangled pure states.
Maximally entangled mixed states

So the maximum possible value of $E(\cdot)$ on states is $r(V)^{-2}$.

A state ρ of $B(H)$ is said to be **maximally entangled** if

$$E(\rho) = r(V)^{-2}.$$

Theorem: The maximally entangled pure states are the vector states ω_ξ where ξ is a maximal vector.

Every maximally entangled state is a convex combination of maximally entangled pure states.
Maximally entangled mixed states

So the maximum possible value of $E(\cdot)$ on states is $r(V)^{-2}$.

A state ρ of $\mathcal{B}(H)$ is said to be \textbf{maximally entangled} if

$$E(\rho) = r(V)^{-2}.$$

\textbf{Theorem}: The maximally entangled pure states are the vector states ω_ξ where ξ is a maximal vector.

Every maximally entangled state is a convex combination of maximally entangled pure states.
Back to earth: Identification of $\| \cdot \|^V$ and $E(\cdot)$

Back to the formative examples (H, V), in which

$$H = H_1 \otimes \cdots \otimes H_N,$$
$$V = \{\xi_1 \otimes \cdots \otimes \xi_N: \xi_k \in H_k, \|\xi_k\| = 1\}.$$

Identify the dual of $\mathcal{B}(H)$ with the Banach space $\mathcal{L}^1(H)$ of all trace class operators $A \in \mathcal{B}(H)$ in the usual way

$$\rho(X) = \text{trace}(AX), \quad X \in \mathcal{B}(H).$$

Theorem: $\| \cdot \|^V$ is the greatest cross norm of the projective tensor product of Hilbert spaces $H_1 \hat{\otimes} \cdots \hat{\otimes} H_N$.

$E(\cdot)$ is the greatest cross norm of the projective tensor product of Banach spaces $\mathcal{L}^1(H_1) \hat{\otimes} \cdots \hat{\otimes} \mathcal{L}^1(H_N)$.
Back to earth: Identification of $\| \cdot \|^V$ and $E(\cdot)$

Back to the formative examples (H, V), in which

$$H = H_1 \otimes \cdots \otimes H_N,$$

$$V = \{ \xi_1 \otimes \cdots \otimes \xi_N : \xi_k \in H_k, \|\xi_k\| = 1 \}. $$

Identify the dual of $B(H)$ with the Banach space $\mathcal{L}^1(H)$ of all trace class operators $A \in B(H)$ in the usual way

$$\rho(X) = \text{trace}(AX), \quad X \in B(H).$$

- **Theorem:** $\| \cdot \|^V$ is the greatest cross norm of the projective tensor product of Hilbert spaces $H_1 \hat{\otimes} \cdots \hat{\otimes} H_N$.

$E(\cdot)$ is the greatest cross norm of the projective tensor product of Banach spaces $\mathcal{L}^1(H_1) \hat{\otimes} \cdots \hat{\otimes} \mathcal{L}^1(H_N)$.

The inner radius

Continuing with the cases

\[H = H_1 \otimes \cdots \otimes H_N, \]
\[V = \{ \xi_1 \otimes \cdots \otimes \xi_N : \xi_k \in H_k, \|\xi_k\| = 1 \}. \]

We can arrange that \(n_k = \dim H_k \) satisfies \(n_1 \leq \cdots \leq n_N \).

Theorem: If \(n_N \geq n_1 n_2 \cdots n_{N-1} \), then

\[r(V) = \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}} \]

whereas if \(n_N < n_1 n_2 \cdots n_{N-1} \) then all I know is:

\[r(V) > \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}}. \]
The inner radius

Continuing with the cases

\[H = H_1 \otimes \cdots \otimes H_N, \]
\[V = \{ \xi_1 \otimes \cdots \otimes \xi_N : \xi_k \in H_k, \|\xi_k\| = 1 \}. \]

We can arrange that \(n_k = \text{dim } H_k \) satisfies \(n_1 \leq \cdots \leq n_N \).

Theorem: If \(n_N \geq n_1 n_2 \cdots n_{N-1} \), then

\[r(V) = \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}} \]

whereas if \(n_N < n_1 n_2 \cdots n_{N-1} \) then all I know is:

\[r(V) > \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}}. \]
Identification of maximal vectors

We continue to assume that $n_N \geq n_1 n_2 \cdots n_{N-1}$.

Theorem: A unit vector $\xi \in H_1 \otimes \cdots \otimes H_N$ is maximal iff it purifies the tracial state τ of $\mathcal{A} = \mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$:

$$\langle (A \otimes 1_{H_N})\xi, \xi \rangle = \tau(A), \quad A \in \mathcal{A}.$$

Corollary: The maximal vectors of $H_1 \otimes \cdots \otimes H_N$ are:

$$\xi = \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}} (e_1 \otimes f_1 + \cdots + e_{n_1 n_2 \cdots n_{N-1}} \otimes f_{n_1 n_2 \cdots n_{N-1}}),$$

where (e_K) is an orthonormal basis for $H_1 \otimes \cdots \otimes H_{N-1}$ and (f_K) is an orthonormal set in H_N.
Identification of maximal vectors

We continue to assume that $n_N \geq n_1 n_2 \cdots n_{N-1}$.

Theorem: A unit vector $\xi \in H_1 \otimes \cdots \otimes H_N$ is maximal iff it purifies the tracial state τ of $\mathcal{A} = \mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$:

$$\langle (A \otimes 1_{H_N})\xi, \xi \rangle = \tau(A), \quad A \in \mathcal{A}.$$

Corollary: The maximal vectors of $H_1 \otimes \cdots \otimes H_N$ are:

$$\xi = \frac{1}{\sqrt{n_1 n_2 \cdots n_{N-1}}} (e_1 \otimes f_1 + \cdots + e_{n_1 n_2 \cdots n_{N-1}} \otimes f_{n_1 n_2 \cdots n_N}),$$

where (e_K) is an orthonormal basis for $H_1 \otimes \cdots \otimes H_{N-1}$ and (f_k) is an orthonormal set in H_N.

Unexpected stability of maximal vectors

In more physical terms, consider a tensor product $H \otimes K$ with $n = \dim H \leq m = \dim K < \infty$. The maximal vectors are

$$\xi = \frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n), \quad (1)$$

where (e_k) is an ONB for H and (f_k) is an ON set in K.

Now assume H is a composite of several subsystems, so that $H = H_1 \otimes \cdots \otimes H_r$. The inner radius of $H_1 \otimes \cdots \otimes H_r \otimes K$ does not change, but the norms $\| \cdot \|^V$ and $E(\cdot)$ do change. They depend strongly on the relative sizes of $\dim H_1, \ldots, \dim H_r$.

What surprises me is that the set of maximal vectors does not: The maximal vectors of $H_1 \otimes \cdots \otimes H_r \otimes K$ still have the form (1).
Unexpected stability of maximal vectors

In more physical terms, consider a tensor product $H \otimes K$ with $n = \dim H \leq m = \dim K < \infty$. The maximal vectors are

$$\xi = \frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n),$$

(1)

where (e_k) is an ONB for H and (f_k) is an ON set in K.

Now assume H is a composite of several subsystems, so that $H = H_1 \otimes \cdots \otimes H_r$. The inner radius of $H_1 \otimes \cdots \otimes H_r \otimes K$ does not change, but the norms $\| \cdot \|^V$ and $E(\cdot)$ do change. They depend strongly on the relative sizes of $\dim H_1, \ldots, \dim H_r$.

What surprises me is that the set of maximal vectors does not: The maximal vectors of $H_1 \otimes \cdots \otimes H_r \otimes K$ still have the form (1).
Unexpected stability of maximal vectors

In more physical terms, consider a tensor product $H \otimes K$ with $n = \dim H \leq m = \dim K < \infty$. The maximal vectors are

$$\xi = \frac{1}{\sqrt{n}}(e_1 \otimes f_1 + \cdots + e_n \otimes f_n),$$

where (e_k) is an ONB for H and (f_k) is an ON set in K.

Now assume H is a composite of several subsystems, so that $H = H_1 \otimes \cdots \otimes H_r$. The inner radius of $H_1 \otimes \cdots \otimes H_r \otimes K$ does not change, but the norms $\| \cdot \|^V$ and $E(\cdot)$ do change. They depend strongly on the relative sizes of $\dim H_1, \ldots, \dim H_r$.

What surprises me is that the set of maximal vectors does not: The maximal vectors of $H_1 \otimes \cdots \otimes H_r \otimes K$ still have the form (1).
Significant problems remain unsolved

We have much less information about N-fold tensor products

$$H = H_1 \otimes \cdots \otimes H_N$$

in cases where $n_N < n_1 n_2 \cdots n_{N-1}$.

Example: $H = (\mathbb{C}^2)^{\otimes N} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$.

- What is the inner radius?
- What are the maximal vectors?
- Which states ρ of $B(H_1 \otimes \cdots \otimes H_{N-1})$ have maximal vectors as “purifications”? i.e., which ρ can be written in the form

$$\rho(A) = \langle (A \otimes 1_{H_N}) \xi, \xi \rangle, \quad A \in B(H_1 \otimes \cdots \otimes H_{N-1})$$

where ξ is a maximal vector in H? (Recently solved)
Significant problems remain unsolved

We have much less information about N-fold tensor products

$$H = H_1 \otimes \cdots \otimes H_N$$

in cases where $n_N < n_1 n_2 \cdots n_{N-1}$.

Example: $H = (\mathbb{C}^2)^\otimes N = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$.

• What is the inner radius?

• What are the maximal vectors?

• Which states ρ of $\mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$ have maximal vectors as “purifications”? i.e., which ρ can be written in the form

$$\rho(A) = \langle (A \otimes 1_{H_N})\xi, \xi \rangle, \quad A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$$

where ξ is a maximal vector in H? (Recently solved)
Significant problems remain unsolved

We have much less information about N-fold tensor products

$$H = H_1 \otimes \cdots \otimes H_N$$

in cases where $n_N < n_1 n_2 \cdots n_{N-1}$.

Example: $H = (\mathbb{C}^2)^{\otimes N} = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$.

- What is the inner radius?
- What are the maximal vectors?
- Which states ρ of $\mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$ have maximal vectors as “purifications”? i.e., which ρ can be written in the form

$$\rho(A) = \langle (A \otimes 1_{H_N})\xi, \xi \rangle, \quad A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$$

where ξ is a maximal vector in H? (Recently solved)
Significant problems remain unsolved

We have much less information about N-fold tensor products

\[H = H_1 \otimes \cdots \otimes H_N \]

in cases where $n_N < n_1 n_2 \cdots n_{N-1}$.

Example: $H = (\mathbb{C}^2)^\otimes^N = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$.

- What is the inner radius?
- What are the maximal vectors?
- Which states ρ of $\mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1})$ have maximal vectors as "purifications"? i.e., which ρ can be written in the form

 \[\rho(A) = \langle (A \otimes 1_{H_N}) \xi, \xi \rangle, \quad A \in \mathcal{B}(H_1 \otimes \cdots \otimes H_{N-1}) \]

where ξ is a maximal vector in H? *(Recently solved)*
The case $N = 3$ (in progress)

Let H, K be Hilbert spaces of dimensions p, q. Here is an “operator space” formula for the inner radius $r(p, q, n)$ of $H \otimes K \otimes \mathbb{C}^n$ in the critical cases $n \leq pq$.

Let M_{pq} be the operator space of $p \times q$ complex matrices, $M_{pq} \cong \mathcal{B}(K, H)$. We consider the following two norms on the space of linear maps $\phi : M_{pq} \to M_{pq}$:

$$\|\phi\|_{HS} = \left(\sum_{i,j=1}^{p,q} \text{trace} |\phi(E_{ij})|^2 \right)^{1/2}$$

(the Hilbert Schmidt norm of $\phi : \mathcal{L}^2(K, H) \to \mathcal{L}^2(K, H)$), and

$$\|\phi\|_{2,\infty} = \sup_{\text{trace } |A|^2 \leq 1} \|\phi(A)\|,$$

(the norm of $\phi : \mathcal{L}^2(K, H) \to \mathcal{B}(K, H)$).
The case $N = 3$ (in progress)

Let H, K be Hilbert spaces of dimensions p, q. Here is an “operator space" formula for the inner radius $r(p, q, n)$ of $H \otimes K \otimes \mathbb{C}^n$ in the critical cases $n \leq pq$.

Let M_{pq} be the operator space of $p \times q$ complex matrices, $M_{pq} \cong \mathcal{B}(K, H)$. We consider the following two norms on the space of linear maps $\phi : M_{pq} \to M_{pq}$:

$$
\|\phi\|_{HS} = \left(\sum_{i,j=1}^{p,q} \text{trace} |\phi(E_{ij})|^2 \right)^{1/2}
$$

(the Hilbert Schmidt norm of $\phi : \mathcal{L}^2(K, H) \to \mathcal{L}^2(K, H)$), and

$$
\|\phi\|_{2,\infty} = \sup_{\text{trace} |A|^2 \leq 1} \|\phi(A)\|
$$

(the norm of $\phi : \mathcal{L}^2(K, H) \to \mathcal{B}(K, H)$).
The \textit{rank} of ϕ is the dimension of its range $\dim \phi(M_{pq})$.

\textbf{Theorem:} For $n \leq pq$, the inner radius of $\mathbb{C}^p \otimes \mathbb{C}^q \otimes \mathbb{C}^n$ is determined by linear maps $\phi : M_{pq} \rightarrow M_{pq}$ as follows:

$$r(p, q, n) = \inf\{\|\phi\|_{2,\infty} : \|\phi\|_{HS} = 1, \ \text{rank} \ \phi \leq n\}.$$

Let's save notation by fixing p, q and writing $r_n = r(p, q, n)$ for $n = 1, 2, \ldots, pq$. We can prove that

$$r_1 = \frac{1}{\sqrt{\min(p, q)}} \geq r_2 \geq \cdots \geq r_{pq} = \frac{1}{\sqrt{pq}}.$$

\textbf{Conjecture:} $r(p, q, n) > r(p, q, n + 1)$ for $n < pq$.

The \textit{rank} of ϕ is the dimension of its range $\dim \phi(M_{pq})$.

Theorem: For $n \leq pq$, the inner radius of $\mathbb{C}^p \otimes \mathbb{C}^q \otimes \mathbb{C}^n$ is determined by linear maps $\phi : M_{pq} \to M_{pq}$ as follows:

$$r(p, q, n) = \inf \{ \| \phi \|_{2, \infty} : \| \phi \|_{HS} = 1, \quad \text{rank} \phi \leq n \}.$$

Let's save notation by fixing p, q and writing $r_n = r(p, q, n)$ for $n = 1, 2, \ldots, pq$. We can prove that

$$r_1 = \frac{1}{\sqrt{\min(p, q)}} \geq r_2 \geq \cdots \geq r_{pq} = \frac{1}{\sqrt{pq}}.$$

Conjecture: $r(p, q, n) > r(p, q, n + 1)$ for $n < pq$.
The *rank* of ϕ is the dimension of its range $\dim \phi(M_{pq})$.

Theorem: For $n \leq pq$, the inner radius of $\mathbb{C}^p \otimes \mathbb{C}^q \otimes \mathbb{C}^n$ is determined by linear maps $\phi : M_{pq} \rightarrow M_{pq}$ as follows:

$$ r(p, q, n) = \inf \{ \| \phi \|_{2,\infty} : \| \phi \|_{\text{HS}} = 1, \quad \text{rank} \ \phi \leq n \}. $$

Let’s save notation by fixing p, q and writing $r_n = r(p, q, n)$ for $n = 1, 2, \ldots, pq$. We can prove that

$$ r_1 = \frac{1}{\sqrt{\min(p, q)}} \geq r_2 \geq \cdots \geq r_{pq} = \frac{1}{\sqrt{pq}}. $$

Conjecture: $r(p, q, n) > r(p, q, n + 1)$ for $n < pq$.
Three qubits: \(p = q = n = 2 \)

\[
H = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad V = \{ \xi \otimes \eta \otimes \zeta : \|\xi\| = \|\eta\| = \|\zeta\| = 1 \}.
\]

Preceding results imply that \(\frac{1}{\sqrt{2}} \geq r(V) > \frac{1}{2} \), and we have

- **Conjectured**: \(r(V) < \frac{1}{\sqrt{2}} \).

This has significant consequences. For example, maximal vectors must have "unequal weights" (and entropy less than the expected value \(\log 2 \)), in the sense that

\[
\xi = \sqrt{\theta} \cdot e_1 \otimes f_1 + \sqrt{1-\theta} \cdot e_2 \otimes f_2
\]

where \(0 < \theta < 1/2 \), \(\{ e_k \} = \text{ONB for } \mathbb{C}^2 \), \(\{ f_k \} = \text{ON set in } \mathbb{C}^4 \).

There is compelling numerical evidence (thanks to Michael Lamoureux and Geoff Price) indicating that

\[
r(V) \leq 0.68 < \frac{1}{\sqrt{2}} \approx 0.71.
\]
Three qubits: \(p = q = n = 2 \)

\[
H = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad V = \{ \xi \otimes \eta \otimes \zeta : \| \xi \| = \| \eta \| = \| \zeta \| = 1 \}.
\]

Preceding results imply that \(\frac{1}{\sqrt{2}} \geq r(V) > \frac{1}{2} \), and we have

- **Conjectured:** \(r(V) < \frac{1}{\sqrt{2}} \).

This has significant consequences. For example, maximal vectors must have “unequal weights” (and entropy less than the expected value \(\log 2 \)), in the sense that

\[
\xi = \sqrt{\theta} \cdot e_1 \otimes f_1 + \sqrt{1-\theta} \cdot e_2 \otimes f_2
\]

where \(0 < \theta < 1/2 \), \(\{e_k\} = \text{ONB for } \mathbb{C}^2 \), \(\{f_k\} = \text{ON set in } \mathbb{C}^4 \).

There is compelling numerical evidence (thanks to Michael Lamoureux and Geoff Price) indicating that

\[
r(V) \leq 0.68 < \frac{1}{\sqrt{2}} \approx 0.71.
\]
Three qubits: \(p = q = n = 2 \)

\[
H = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2, \quad V = \{ \xi \otimes \eta \otimes \zeta : \|\xi\| = \|\eta\| = \|\zeta\| = 1 \}.
\]

Preceding results imply that \(\frac{1}{\sqrt{2}} \geq r(V) > \frac{1}{2} \), and we have

- **Conjectured:** \(r(V) < \frac{1}{\sqrt{2}} \).

This has significant consequences. For example, maximal vectors must have “unequal weights” (and entropy less than the expected value \(\log 2 \)), in the sense that

\[
\xi = \sqrt{\theta} \cdot e_1 \otimes f_1 + \sqrt{1 - \theta} \cdot e_2 \otimes f_1
\]

where \(0 < \theta < 1/2 \), \(\{ e_k \} = \text{ONB for } \mathbb{C}^2 \), \(\{ f_k \} = \text{ON set in } \mathbb{C}^4 \).

There is compelling numerical evidence (thanks to Michael Lamoureux and Geoff Price) indicating that

\[
r(V) \leq 0.68 < \frac{1}{\sqrt{2}} \approx 0.71.
\]
NEWS FLASH: \(r(2, 2, 2) < \frac{1}{\sqrt{2}}! \)

Two days ago, I received an email from Geoff Price in which he seems to prove that \(r(2, 2, 2) \leq \frac{2}{3} \approx 0.68. \)

More precisely, for the unit vector

\[
\xi = (0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, 0, 0, 0) \in \mathbb{C}^8 = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2,
\]

and with some trickery, he hand-calculates

\[
\|\xi\|_V = \sup_{\|v_k\|=1} |\langle \xi, v_1 \otimes v_2 \otimes v_3 \rangle| = \frac{2}{3},
\]

which implies \(r(2, 2, 2) \leq 2/3 < 1/\sqrt{2}. \)

It is conceivable that \(r(2, 2, 2) = 2/3, \) but numerical evidence suggests \(r(2, 2, 2) \leq 0.65 < 2/3. \)
NEWS FLASH: $r(2, 2, 2) < \frac{1}{\sqrt{2}}!$

Two days ago, I received an email from Geoff Price in which he seems to prove that $r(2, 2, 2) \leq \frac{2}{3} \approx 0.68$.

More precisely, for the unit vector

$$\xi = (0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, 0, 0, 0) \in \mathbb{C}^8 = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2,$$

and with some trickery, he hand-calculates

$$\|\xi\|_V = \sup_{\|v_k\|=1} |\langle \xi, v_1 \otimes v_2 \otimes v_3 \rangle| = \frac{2}{3},$$

which implies $r(2, 2, 2) \leq 2/3 < 1/\sqrt{2}$. It is conceivable that $r(2, 2, 2) = 2/3$, but numerical evidence suggests $r(2, 2, 2) \leq 0.65 < 2/3$.
Connects with the local theory of Banach spaces

Let H_1, \ldots, H_N be finite dimensional Hilbert spaces, consider the two Banach spaces

$$H = H_1 \otimes \cdots \otimes H_N,$$
$$E = H_1 \hat{\otimes} \cdots \hat{\otimes} H_N,$$

and let c be the smallest constant that relates the two norms $\|\xi\|_E \leq c \cdot \|\xi\|_H$. The Banach space folks want to calculate or estimate the value of c, and they have many results.

Our calculations provide the following new result: Arrange that n_N is the largest of n_1, \ldots, n_N. Then

$$c = \sqrt{n_1 \cdots n_{N-1}}, \quad \text{if } n_N \geq n_1 \cdots n_{N-1};$$

otherwise, $c < \sqrt{n_1 \cdots n_{N-1}}$.
Connects with the local theory of Banach spaces

Let H_1, \ldots, H_N be finite dimensional Hilbert spaces, consider the two Banach spaces

\[
H = H_1 \otimes \cdots \otimes H_N, \\
E = H_1 \hat{\otimes} \cdots \hat{\otimes} H_N,
\]

and let c be the smallest constant that relates the two norms $\|\xi\|_E \leq c \cdot \|\xi\|_H$. The Banach space folks want to calculate or estimate the value of c, and they have many results.

Our calculations provide the following new result: Arrange that n_N is is the largest of n_1, \ldots, n_N. Then

\[
c = \sqrt{n_1 \cdots n_{N-1}}, \quad \text{if } n_N \geq n_1 \cdots n_{N-1};
\]

otherwise, $c < \sqrt{n_1 \cdots n_{N-1}}$.