
A set \(A \) is said to be countable if it is either finite, or countably infinite in the sense that there is a bijection \(f : \{1, 2, 3, \ldots \} \to A \). Thus, the elements of any nonempty countable set can be enumerated \(A = \{x_1, \ldots, x_n\} \) for some finite positive integer \(n \), or else \(A = \{x_1, x_2, \ldots\} \), with \(x_i \neq x_j \) for all \(i \neq j \).

A \(\sigma \)-algebra is a family \(A \) of subsets of a fixed nonempty set \(X \) with the following properties:

(i) \(\emptyset \in A \).
(ii) \(E \in A \implies X \setminus E \in A \), where \(X \setminus E \) denotes the complement of \(E \).
(iii) If \(E_1, E_2, \ldots \) is a sequence of elements of \(A \) then \(\bigcup_n E_n \in A \).

We have pointed out in the lecture that every set \(X \) has a smallest \(\sigma \)-algebra \(A_0 = \{\emptyset, X\} \) and a largest one \(A_1 = 2^X \) = \{all subsets of \(X\}\}. In these problems you will look at other examples.

Exercise 1. Let \(X \) be a nonempty set and let \(A \) be the family of all subsets \(E \subseteq X \) which are either countable or co-countable (thus, a set \(E \) belongs to \(A \) iff \(E \) is countable or \(X \setminus E \) is countable). Show that \(A \) is a \(\sigma \)-algebra.

Exercise 2. Answer true or false, or yes or no, giving a brief reason for your reply. The following assertions/questions relate to the \(\sigma \)-algebra \(A \) of Exercise 1, for various sets \(X \).

(a) For a countable set \(X \), \(A = 2^X \).
(b) If \(X = [0,1] \) is the unit interval then the set of rational numbers in \([0,1]\) belongs to \(A \).
(c) If \(X = [0,1] \), then the set of irrational numbers in \([0,1]\) belongs to \(A \).
(d) If \(X = [-1,1] \) does the set of rational numbers in \([0,1]\) belong to \(A \)?
(e) Let \(X = [-1,1] \) be as in (c), let \(B \) be the set of rational numbers in \([0,1]\) and let \(C \) be the set of irrational numbers in \([-1,0]\). Does \(B \cup C \in A \)?

Exercise 3. Let \(X \) be a set and let \(\mathcal{F} \) be an arbitrary nonempty family of subsets of \(X \). Show that there is a smallest \(\sigma \)-algebra \(A \) that contains every set of \(\mathcal{F} \) in the sense that 1) \(A \) is a \(\sigma \)-algebra containing \(\mathcal{F} \), and 2) for every other \(\sigma \)-algebra \(B \) which contains \(\mathcal{F} \) one has \(B \supseteq A \).

The \(\sigma \)-algebra \(A \) associated with a family of sets \(\mathcal{F} \) as in Exercise 3 is called the \(\sigma \)-algebra generated by \(\mathcal{F} \). The remaining exercises relate to the real line \(X = \mathbb{R} \) and the \(\sigma \)-algebra \(B \) generated by the family \(\{(a,b) : -\infty < a < b < \infty\} \) of all open intervals in \(\mathbb{R} \). \(B \) is called the Borel \(\sigma \)-algebra of the real line, and subsets of \(\mathbb{R} \) that belong to \(B \) are called Borel sets.

Exercise 4.

(a) Show that every open subset of \(\mathbb{R} \) is a Borel set. Hint: show that every open set can be written as a union of open intervals with rational endpoints.
(b) Show that every closed subset of \(\mathbb{R} \) is a Borel set.
(c) Show that the set \((0,1] = \{x \in \mathbb{R} : 0 < x \leq 1\} \) is a Borel set.

Exercise 5. Can you exhibit a subset of \(\mathbb{R} \) that is not a Borel set? If your answer is “no”, then just say that; if your answer is “yes” please give an example.