
A complex inner product space is a complex vector space V, together with a given inner product $\langle \cdot , \cdot \rangle : V \times V \to \mathbb{C}$ (so $\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle$, $\langle y, x \rangle = \langle x, y \rangle$, and $\langle x, x \rangle > 0$ for nonzero $x \neq 0$). We proved the Schwarz inequality in the lectures $|\langle x, y \rangle| \leq \|x\|\|y\|$ where $\|x\|$ is defined as $\langle x, x \rangle^{1/2}$, and we showed that $\|\cdot\|$ is a norm on V. You can use these results in the exercises to follow. A sequence e_1, e_2, \ldots of vectors in an inner product space is called orthonormal if $\langle e_m, e_n \rangle = \delta_{mn}$ for every $m, n = 1, 2, \ldots$ A Hilbert space is a complex inner product space that is complete; throughout the following exercises, H will denote a Hilbert space.

Exercise 1. Show that for any two vectors $x \neq y$ in an inner product space V we have the parallelogram law

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

Notice that this is an assertion about two-dimensional planes in V, and draw a sketch illustrating the identity that explains why it is called the parallelogram law.

Exercise 2. A subset K of a (real or complex) vector space V is called convex if for every $x, y \in K$, the set

$$[x, y] = \{tx + (1-t)y : 0 \leq t \leq 1\}$$

is also contained in K. Draw a sketch illustrating the fact that $[x, y]$ can be interpreted as the line segment joining two points.

Assuming that K is a nonempty convex set in an inner product space V, let $m = \inf_{x \in K} \|x\|$. Let x_1, x_2, \ldots be a sequence of vectors in K such that $\|x_n\| \to m$ as $n \to \infty$. Show that x_n is a Cauchy sequence. Hint: use Exercise 1.

Exercise 3. Let $K \neq \emptyset$ be a closed convex set in a Hilbert space H. Show that K contains a unique element of smallest norm in the following sense: a) there is an element $x_0 \in K$ such that $\|x_0\| \leq \|y\|$ for every $y \in K$, and b) if x_1 is a element of K with that property, then $x_1 = x_0$.

Exercise 4. Let M be a closed subspace of a Hilbert space H, and let $x \in H$.

a) Show that the coset $x + M$ is a closed convex set in H.

b) Deduce that x has a unique decomposition $x = m + n$, where $m \in M$ and n is orthogonal to M in the sense that $\langle n, z \rangle = 0$ for all $z \in M$.

c) Show that for the decomposition $x = m + n$ of part b) one has

$$\|m\|^2 + \|n\|^2 = \|x\|^2.$$

Exercise 5. Let e_1, e_2, \ldots be an orthonormal sequence in H, let (a_n) be a sequence of complex numbers such that $\sum_{n=1}^{\infty} |a_n|^2 < \infty$, and consider the sequence of partial sums

$$S_n = \sum_{k=1}^{n} a_k e_k, \quad n = 1, 2, \ldots.$$

a) Show that the sequence S_n converges to a vector $x \in H$ as $n \to \infty$.

b) Show that $a_n = \langle x, e_n \rangle$ for every $n = 1, 2, \ldots$.

1