joint with D.Kalinov
and E.Rains 2005.13604

1. Rational Chezednik algebras
for S_{n}.
work over

$$
\left.H_{t_{1}}^{H_{K}}(n)=\left\langle S_{n}, x_{1}, \ldots, x_{n}, \frac{\mathbb{C}}{y_{1}, \ldots, y_{n}}\right\rangle\right\rangle \in \mathbb{C}
$$

1) S_{n} permutes x_{i}, y_{i} as usual
2) $\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=0$
3)

$$
\begin{aligned}
& {\left[y_{i}, x_{j}\right]=k S_{i j}} \\
& {\left[y_{i j}, x_{i}\right]=t-k \sum_{j \neq i} S_{i j} .}
\end{aligned}
$$

Realization via Dunk operates action of $H_{t, k}(n)$ on scaling $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right) \underset{t=\hbar,}{ }(t, k) \underset{t \rightarrow 0}{\rightarrow}(\lambda t, \lambda k)$ $x_{i} \longrightarrow x_{i} \cdot \begin{gathered}t=\hbar, \\ S_{i j} \rightarrow 0 \\ \\ x_{i j}\end{gathered}$
$y_{i} \mapsto D_{i}=t \partial_{i}^{\sum_{p}}+k \sum_{j \neq i} \frac{1}{x_{i}-x_{j}} s_{i j}$.

$$
\begin{aligned}
& H=\left.\sum_{i} y_{i}^{\frac{x_{1}}{2}}\right|_{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{S_{n}}}=1 . \quad \Delta(k+1) \sum_{i \neq j\left(x_{i}-x_{j}\right)^{2}} \frac{1}{1 \leqslant i, j \leqslant n} \\
& \Delta=\sum \partial_{i}^{2} .
\end{aligned}
$$

Quantum
Integrals of motion

$$
\begin{aligned}
& H_{m}=\left.\sum_{i} y_{i}^{m}\right|_{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)^{S_{n}}} \\
& H_{m}=\partial_{1}^{m}+\cdots+\partial_{n}^{m}+\text { lower terms. } \\
& {\left[H_{i}, H_{j}\right]=0 \quad H_{1}=\sum_{i} \partial_{i}}
\end{aligned}
$$

$H_{2}=H . \lll$ quantum integrable.
spherical Maqagebra:

$$
\begin{array}{lr}
\mathbb{C} S_{n} \ni e=\frac{1}{n!} \sum_{s \in S_{n}} s & \begin{array}{r}
\text { symmetrize. } \\
H_{1, k}(n) \\
e^{2}=e
\end{array} \\
e H_{k}^{(n) e} \text {-spherical } & H_{k}(n)
\end{array}
$$

subalgetre of $H_{k}(n)$ (with unit e).
For $k \neq-\frac{r}{m}, \quad 2 \leq m \leq n$ it is morita equivalent to $H_{k}(u)$ via $M \longrightarrow e M$

$$
H_{k}(a) \quad e H_{k}(4) e \text {. }
$$

$e H_{k}(n) e$ is the algebra generated by $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and H, contains all H_{m}.
Want to take $\operatorname{limit}_{\text {of } H_{k}(N)} N \rightarrow \infty$ (or rather, make of $H_{k}(N) \in \mathbb{C}$). Consider $T_{m, l}=e \sum_{i=1}^{N} x_{i}^{m} y_{i}^{l} e$

$$
\begin{aligned}
& T_{0,0}=N \quad T_{1,0}=\sum x_{i} \quad \text { eH } H_{k}(n) e \\
& T_{0,1}=\sum y_{i}=\sum \partial_{i}
\end{aligned}
$$

$$
\Gamma_{0,2}=H_{0}, \ldots
$$

These are algebraically depend at for every fixed n, but assmp. $n \rightarrow \infty$ independent, finitely value

$$
Z_{\vec{n} m, l}^{=T T_{m, l}^{n_{m, l}} \left\lvert\, \begin{array}{l}
\vec{n}: \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{m a n}(0,0) \rightarrow \mathbb{Z}_{20} \\
11 \\
\left(n_{m, l}\right) \\
\because \because \because \vdots
\end{array}\right.}
$$

(choose some ordering).

$$
Z_{\vec{n}} \cdot Z_{\vec{p}}=\sum_{\vec{q}} C_{\vec{n}, \vec{p}}^{\vec{q}}(N) Z_{\vec{p} \text { poly in } N .}
$$

Get an algebra
 deformation or of of $Y_{0, \nu}$

$$
\begin{aligned}
& Y_{0, D}=U(\operatorname{Diff}(\mathbb{C})) \\
& \rceil T_{\text {Lie alg. }}(\pi-\nu) \\
& \text { basis } x^{i} \partial^{j}{ }_{z_{i j}}(i, j) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \\
& \operatorname{gr} y_{0, \nu}=\mathbb{C}\left[z_{i j}\right] \\
& i, j \geqslant 0, i+j>0 \text {. }
\end{aligned}
$$

Also there is a version for of en :

$$
\begin{gathered}
\mathbb{K}_{n}: \\
H_{k}(N) \otimes \operatorname{Mat}_{n}(\mathbb{C})^{\otimes N} \\
\mathbb{C} S_{m} \otimes U^{\prime} \otimes S_{N} \\
\uparrow_{\Delta} \\
\mathbb{C} S_{N} \ni e \\
\Delta(e)\left(H_{k}(N) \otimes \operatorname{Mat}_{n}(\mathbb{C})^{\otimes N}\right) \Delta(e) \\
Y_{k, v}\left(g l_{n}\right)-\text { def. }
\end{gathered}
$$

of $\quad U\left(o \ell_{n} \otimes \operatorname{Diff}^{\prime} f(\Phi)\right) /(\pi=\nu)$.

$$
\begin{gathered}
Y_{0, p}\left(o g \ell_{n}\right) \\
Y_{k, v}\left(g \ell_{w}\right)-D D C A \\
\text { rational degen. } \\
\begin{array}{c}
\text { construct boy } \quad \text { of Yangian } \\
\text { gen and rel } \\
\text { (Gay) } N \geqslant 4
\end{array} \quad Y(\text { ogle })
\end{gathered}
$$

$Y\left(\hat{o g}_{N}\right)$ is a def of

$$
\left.U\left(o g l_{N}\right) \text { is a def of } \hat{o g}_{N}[z]\right) \quad \text { git }(g)=U(\operatorname{og}[y])
$$

II for zero central ext.

$$
U\left(\operatorname{gl} l_{N}\left[t, t^{-1}, y\right]\right) \quad \mathbb{C}\left[t, t^{-1}, y\right]
$$

SI l_{2}-equivainant presentation of $Y_{k, v}\left(o g l_{1}\right)=Y_{k, \nu}$
$\operatorname{gr} y_{k, \nu}=V_{\eta}\left(\mathbb{C}[x, p]_{\{,\}}\right)$ 0 - Lie alg
What's a presentation of of Hamill in the plane. (classical). this?

$$
\mathbb{C}[x, p] \rho \operatorname{sl}_{2}=\left\langle p^{2}, x p, x^{2}\right\rangle
$$

Generated by

$$
V_{1}, V_{2}, V_{3}, V_{4}
$$

What are relations?
Obvious relations:

$$
\left[V_{1}, ?\right]=0
$$

$$
\left[V_{2}, V_{4}\right] \subseteq V_{3}
$$

+ Interesting: n is gen. by V_{4}, what are relations?
Feigin, 1980s,
Hijligenberg \& Post
1991

1)

$$
\begin{aligned}
& \Lambda^{2} V_{4}=V_{\phi_{1}} \oplus \underset{\phi_{2}}{V_{5}} \\
& \phi_{1}=0
\end{aligned}
$$

2)

$$
\begin{aligned}
& \phi_{1}=0 \\
& V_{4} \otimes V_{5}=\left(V _ { 2 } \oplus V _ { 4 } \oplus V _ { 6 } \oplus \left(V_{8}\right.\right. \\
& \psi_{1} \quad \psi_{2} \psi_{3} \psi_{4} \\
& \psi_{1}=0, \psi_{4}=0
\end{aligned}
$$

3)

$$
\begin{aligned}
& \Lambda^{2} V_{5}=V_{3}^{\oplus} V_{7} \\
& x_{1}=0 \quad x_{2}
\end{aligned}
$$

The. $([H P]) \mathbb{C}[x, p]_{\geqslant 3}$ is
is gen by V_{4} with rel: $\phi_{1}=0, \psi_{1}=0, \psi_{4}=0$ $x_{1}=0$.
The. Deformation preserving filtration:

$$
\begin{aligned}
& \phi_{1}=-\frac{s_{1}}{2} K \text { in third paramo. } \\
& V_{1}=15 s_{1} V_{1} \quad \begin{array}{r}
\text { for appropr } \\
\text { noimaliz) }
\end{array} \\
& \psi_{4}=0 \\
& X_{1}=90 s_{1} V_{3}+42 s_{2} \cdot V_{1} V_{3}+7 s_{2} \cdot s^{2} V_{2}
\end{aligned}
$$

have some relation between them.

- \ddagger scaling symm: essential

$$
s_{1}^{*}=s_{1} k^{2}, s_{2}^{*}=s_{2} k^{3 p}
$$

Thu. This is our $Y_{k, \nu}$ with

$$
S_{1}^{*}=\left(k^{2}+k+1\right) \nu^{2}-k(k+1) \nu^{3}
$$

$$
S_{2}^{*}=k(k+1) v^{3}
$$

Set $\frac{\left(s_{1}^{*}+s_{2}^{*}\right)^{2}}{s_{1}^{*^{2}}}=u$

$$
\begin{aligned}
& z=k^{-1}+k+1 \\
& z^{3}-u z+u=0
\end{aligned}
$$

Galois symm. over CCu) S_{3} (Galois gp of this eq).
$\mathbb{C}(z) \supset \mathbb{C}(u)$ cubic ext. (not Galois)
$\mathbb{C}(k)$-splitting field.

$$
\begin{aligned}
& S_{12}(k, \nu)=(-k-1, \nu) \\
& S_{23}(k, \nu)=\left(\frac{1}{k}, k \nu\right)
\end{aligned}
$$

Triality: (for Toroidal alg.

$$
\underset{s_{3}}{q_{1} q_{2} q_{3}}=1
$$

Y if $\nu=N$ integer

$$
\begin{gathered}
Y_{k, v} / I=e H_{k}(n) e \\
\text { ideal. }
\end{gathered}
$$

Deligne categories.
Machine which allows you to make N a continuous parameter, in any problem involving classical groups?
$S_{N}, G L_{N}, O_{N}, S_{P_{N}}$.
G group, super group
Rep $G f . d$ catterory Reps
C- linear $/ \mathbb{C}$, artinian adestive abelian

$$
+\operatorname{Hom}(x, y) \text { f.dim }
$$

molt objects fin length.

$$
\left(\begin{array}{l}
\text { - monoidal } \\
\text { - rigid } \\
\text { - symmetric }
\end{array}\right.
$$

$$
x \rightarrow x^{*}
$$

$$
\begin{aligned}
& X \rightarrow X \\
&: X \otimes Y \rightarrow Y \otimes X \rightarrow X \otimes Y \\
& i d
\end{aligned}
$$

- \otimes bilinear. $f, g \mapsto f \otimes g$
- $\operatorname{End}(\mathbb{I})=\mathbb{C}$

Such categories are called symmetric tensor cat. (STC)

Deligne: Moderate growth: SIC e has moderate growth if for any $X \in C$ $\exists C_{x} \geqslant 1 \quad$ st.
length $\left(X^{\otimes N}\right) \leqslant C_{X}^{N}$. of comp. series.
The (Deligne, 2002)
A STC of moderate growth is Rep G.

Without moderate growth, not true, have also "interpolations" of Rep G.

1) $\operatorname{Rep} G L_{\nu}$-interpol. of rep th of $G L_{N}(G)$ (Deligne-Milne, "Tannakian cat.", 1981)

Need to define Rep $G L_{N}(\mathbb{C})$ in a way that does not mention matrices.
$V=\mathbb{C}^{N} \quad V^{*}$, amy iced rept is a direct summand

$$
\begin{aligned}
& \text { in } V_{\otimes}^{\otimes} \otimes V^{* \otimes m} \\
& {[K, m]=V^{*} K \otimes V^{* \otimes m}} \\
& l=\{[K, m]\}
\end{aligned}
$$

$$
\operatorname{Rep} G L_{\mu}(\mathbb{C})=\text { Karoubian }
$$

closure of e :

1) adjoin images of projectors

$$
\begin{aligned}
& \text { projectors } \\
& \text { if } P: X \rightarrow X, P^{2}=P
\end{aligned}
$$

\Rightarrow add object Imp p. (idempotent completion)
2) add finite direct sums.

$$
\begin{aligned}
& \begin{aligned}
& \otimes K_{\otimes} V^{* \otimes m}=W \oplus W^{+} \\
& \gg
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Hom}^{([K, m],[p, g])} \\
& =\operatorname{Hom}_{G L_{N}}\left(V^{\otimes K \otimes V^{* \otimes m}, V^{\otimes P} \otimes V^{* \otimes q)}}\right. \\
& =\operatorname{Hom}_{G L_{N}}\left(V^{\otimes K+g}, V^{\otimes m+p}\right) \\
& =0 \quad \text { if } \quad k+q \neq m+p \\
& \\
& \quad \Leftrightarrow K-m \neq p-q
\end{aligned}
$$

otherwise:
$\operatorname{Hom}_{G L_{N}}\left(V^{\otimes n}, V^{\otimes n}\right)$
is generated by $\mathbb{S} S_{n}$.
(coincides if $n \leqslant N$)
(Sthur-Weyl duality)
We can draw this as pictures:

V	V	\cdots	$V^{*} \cdots$	V^{*}
\downarrow	\downarrow	\downarrow	T	

$\operatorname{Hom}\left(V^{\otimes 3} \otimes V^{* \otimes 2}, V^{\otimes 4} \otimes V^{* \otimes 3}\right)$

$\downarrow \downarrow \uparrow$
Now define RepGLD with objects $[k, m]$ and mouphisms as above (pictures), comp. as above with $N \longmapsto \nu \in \mathbb{C}$.
Def.
$\operatorname{Rep} G L_{v}=$ Karobian closure of Rep $G L_{\nu}$
End $([k, m])=\mathbb{C} S_{k+m}$ with a differcut product Called Walled Braver algebra $B_{k, m}(\gamma)$
Ex. $B_{1,1}(8)$:

$$
\begin{aligned}
& \left.\left.\right|_{i}\right|_{i} ^{\uparrow}=1 \\
& a^{2}=0=v=a \\
& \Rightarrow \\
& B_{k, m}(v)=\mathbb{C}[a] / a^{2}=\nu \cdot a
\end{aligned}
$$

Semisimple if $\gamma \neq 0$ not if $\nu=0$.
Thm. $B_{k, m}(\nu)$ are semisimg) $\forall k, m \Longleftrightarrow D \notin \mathbb{Z}$.
Cor. $\operatorname{Rep} G L_{0}, r \notin \mathbb{Z}$ is a semisimple STC. No moderate growth:

$$
\begin{aligned}
& X=\sum_{\substack{T_{\text {simple }}}}^{n_{i} X_{i}} \quad l(X)=\sum n_{i} \\
& \operatorname{Hom}(X, X)=\oplus \operatorname{Mat}_{n_{i}}(\mathbb{C}) \\
& \operatorname{dim} \operatorname{Hom}(X, X)=\sum n_{i}^{2} \\
& l(X) \geqslant \sqrt{\operatorname{dim} \operatorname{Hom}(X, X)} \\
& \left(\sum n_{i}\right)^{2} \geqslant \sum n_{i}^{2} \\
& X=V \otimes n \\
& \operatorname{Hom}(X, X)=\mathbb{C} S_{n} \\
& l\left(V^{\otimes n}\right) \geqslant \sqrt{n!}>C \\
& \forall C \\
& \nu \in \mathbb{Z}_{20}:
\end{aligned}
$$

Rep $G L_{D}$ is not semis, not abelian
Has a tensor ideal of negligible morphisms
$\operatorname{Rep} G L_{0} / \operatorname{Neg}=\operatorname{Rep}_{c e} G L_{n}$ classical.
$e^{\frac{\varepsilon x .}{H_{k}}}(n) e=$ = quantum reduction from diff. operators on of n
(deformed HC homom.) E-Ginsburg.
$e H_{k}(u) e$ is a quantic.
of Calogezo-Moser space $\{(X, Y) \mid[X, Y]+1$ has ok 1$\} / G L_{n}$
$V=\mathbb{C}^{n \times n}$

$$
W=\mathbb{C}
$$

$$
\begin{aligned}
& 12 C^{\infty} \\
& \text { Hill }_{n}\left(\mathbb{C}^{2}\right)
\end{aligned}
$$

Nakajima variety
= reduction from
space of rep of doubled quiver
$\operatorname{Rep} D Q$

$$
D(\operatorname{Rep} Q)^{\|} \underset{o \mathcal{F}_{N} \times \mathbb{C}^{N}}{ } / / G h_{N}
$$

\leadsto We can interpolate this in Rep GRo
\leadsto get $y_{k, v}$.
(Costello's paper).
Can define $\underset{\text { parameters. }}{\substack{\text { Skein } \\ \text { cater. }}}$ Kalinev
$\operatorname{Rep}_{q} G L_{0}$, parameters q and $a=q^{\nu}$
\uparrow
Braided Q cat (emisimple if $v, 9$
RT inv. generic).
of links
$=$ Homely pol of 9.8 .
Rep S_{v} :
write Rep S_{N} without mentioning
$P=\mathbb{C}^{N}$-perm, reps.
$P^{*}=P \quad$ algetic
\forall ir. Sep z is a diresummond in $p^{\otimes n}$
$e=\left\langle p_{11}^{\otimes n}\right\rangle$
$\operatorname{Hom}([k],[p])$ for large N

$$
\begin{aligned}
& =\operatorname{Hom}_{S_{N}}\left(P^{\otimes k}, P^{\otimes P}\right) \\
& =\operatorname{Hom}_{S_{N}}\left(\sigma, P^{\otimes K+P}\right) \\
& \quad\left(P^{\prime \prime} \otimes k+P\right)^{S N} \\
& =\operatorname{Fun}\left([1, N]^{r}\right)^{S_{N}} \quad r=k+P .
\end{aligned}
$$

l basis corr. to S_{N}.
on $\left(x_{1}, \ldots, x_{r}\right)$

$$
x_{i} \in[1, N]
$$

$\theta \leftrightarrow$ equality patterns.

O: $\quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

$$
x_{1}=x_{3}, \quad x_{2}=x_{5}
$$

no other equalities.

Set partitions of $\{1, \ldots, r\}$ into $\leq N$ subsets.
N large \Rightarrow all set partit.

$$
\operatorname{Hom}([K],[p])=0_{K+p}
$$

-set partitions of

$$
\{1, \ldots, k+p\} \quad \theta \rightarrow \delta_{0}
$$

How to compose: pictures:

立

$$
\begin{aligned}
& \sum_{\theta} \theta^{2} \sum \delta \theta^{\prime} \\
& \theta^{\prime}<\theta
\end{aligned}
$$

nonstrict

$$
[4]_{f}^{\rightarrow}[3] \underset{g}{\rightarrow}[5] \text { eq. }
$$

$$
N
$$

$\widehat{R e p} S_{\nu}$ - the cat defined So with $N \longmapsto \gamma$

Rep S_{ν} - Karonbian completion

$$
\operatorname{End}([K])=\operatorname{Par}_{k}(r)
$$ k-th partition algelora Thm $\operatorname{Par}_{k}{ }^{\prime}(\mathrm{O})$ semisimple

$$
\begin{aligned}
& \Longleftrightarrow \quad \gamma \neq 0,1,2, \ldots \\
& \Rightarrow \text { If } \quad \gamma \neq 0,1,2, \ldots
\end{aligned}
$$

$\Rightarrow \operatorname{Rep} S_{\nu}$ is a semisinple STC,

$$
\begin{aligned}
& \nu=0,1,2, \ldots \quad \nu=N \\
& \operatorname{Rep} S_{r} \supset I \quad \\
& \operatorname{Rep} S_{\nu} / I=\operatorname{Rep}_{c}\left(S_{N}\right)
\end{aligned}
$$

Rem for RepGLr, simple
objects V_{λ}, μ λ, μ partitions
interpolates

$$
\underbrace{V\left(\lambda_{1}, \ldots, \lambda_{k}, 0, \ldots, 0,-\mu_{\ell}, \cdots,-\mu_{1}\right)}_{N}
$$

For $\operatorname{Rep} S_{\gamma}$:
simples are
$X_{\lambda} \quad \lambda$ partition.
interpolates ivrep

$$
\pi^{\prime}\left(N-|\lambda|, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)=\tilde{\lambda}(N)
$$

of S_{N}
ex: $\lambda=(3,2,1)$

$$
\sim_{2} N-A
$$

$\frac{\tilde{\lambda}(N)}{\substack{N \text {-padding } \\ \sim f \lambda^{2}}}$

$$
H_{k}(\nu)-\bmod =
$$

$\left\{M \in \operatorname{Rep} S_{0} \mid\right.$
$x: P \otimes M \rightarrow M$
$y: P \otimes M \longrightarrow M$

$$
[x, x]=0
$$

$$
[y, y]=0
$$

$[y, x]=\cdots$
Classically: $e H_{K}(y) e=E n d_{H_{k}(w)}\left(H H_{k}^{(s)}\right)$

$$
\begin{aligned}
& \text { Classically: } e H_{k}(v) e=\operatorname{End}_{H_{k}}(v)\left(H_{k}(v) e\right) \\
& \uparrow
\end{aligned}
$$

Cor. If M is a $H_{K}(\nu)$-module in cat θ then $\left.e M=\operatorname{Hom}_{R Q}^{\operatorname{Rom}} S_{8}^{(I I}, M\right)$ is a $Y_{k, D}$-module-

