Geometric characterisation of topological string partition functions

Jörg Teschner
Department of Mathematics
University of Hamburg,
and
DESY Theory

19. Oktober 2020

Based on joint work with I. Coman, P. Longhi, E. Pomoni

Topological string partition functions

Consider A/B model topological string on Calabi-Yau manifold X / Y. World-sheet definition of $Z_{\text {top }}$ yields formal series

$$
\begin{equation*}
\log Z_{\mathrm{top}} \sim \sum_{g=0}^{\infty} \lambda^{2 g-2} \mathcal{F}_{g} \tag{1}
\end{equation*}
$$

F_{g} have mathematical definition through Gromov-Witten invariants.

Question: Existence of summations?

Do there exist functions $Z_{\text {top }}$ having (1) as asymptotic expansion?
(Functions on which space? Functions, sections of a line bundle, or what?)
$Z_{\text {top }}$ could be locally defined functions on $\mathcal{M}_{\text {Käh }}(X)$ or $\mathcal{M}_{\text {cplx }}(Y)$.

$$
Z_{\text {top }}=Z_{\text {top }}(t), \quad t=\left(t_{1}, \ldots, t_{d}\right): \text { coordinates on } \mathcal{M}_{\text {Käh }}(X) .
$$

Dream: There exists a natural geometric structure on $\mathcal{M}_{\text {cplx }}(Y)$ allowing us to represent $Z_{\text {top }}$ as "local sections".

Our playground: Local Calabi-Yau manifolds Y_{Σ} of class Σ :
$u v-f_{\Sigma}(x, y)=0$ s.t. $\Sigma=\left\{(x, y) \in T^{*} C ; f_{\Sigma}(x, y)=0\right\} \subset T^{*} C$ smooth, $f_{\Sigma}(x, y)=y^{2}-q(x), q(x)(d x)^{2}:$ quadratic differential on cplx. surface C.

Moduli space $\mathcal{B} \equiv \mathcal{M}_{\text {cplx }}(Y)$: Space of pairs $(C, q), C$: Riemann surface, q : quadratic differential.

Special geometry: Coordinates

$$
a^{r}=\int_{\alpha^{r}} \sqrt{q}, \quad \check{a}^{r}=\int_{\check{\alpha}_{r}} \sqrt{q}=\frac{\partial}{\partial a^{r}} \mathcal{F}(a)
$$

where $\left\{\left(\alpha^{r}, \check{\alpha}_{r}\right) ; r=1, \ldots, d\right\}$ is a canonical basis for $H_{1}(\Sigma, \mathbb{Z})$.
Integrable structure: (Donagi-Witten, Freed) \exists canonical torus fibration

$$
\pi: \mathcal{M} \rightarrow \mathcal{B}, \quad \Theta_{b}:=\pi^{-1}(b)=\mathbb{C}^{d} /\left(\mathbb{Z}^{d}+\tau(b) \cdot \mathbb{Z}^{d}\right)
$$

$\tau(b)_{r s}=\frac{\partial}{\partial a_{\imath}^{r}} \frac{\partial}{\partial a_{\imath}^{s}} \mathcal{F}\left(a_{\imath}\right)$, coordinates $\theta_{\imath}^{r}, r=1, \ldots, d$, on torus fibers.

Alternative representations of \mathcal{M} :

(a) \mathcal{M} moduli space of pairs $(\Sigma, \mathcal{D}), \mathcal{D}$: divisor on Σ

- Abel map: Divisors \mathcal{D} to points in Θ_{b}
(b) $\mathcal{M} \simeq \mathcal{M}_{\text {Hit }}(Y)$, moduli space of Higgs pairs (\mathcal{E}, φ)
- Hitchin: Map Higgs pairs (\mathcal{E}, φ) to pairs $(\Sigma, \mathcal{D}), \Sigma$ defined from $q=\frac{1}{2} \operatorname{tr}\left(\varphi^{2}\right)$ as above, \mathcal{D} (roughly): divisor characterising the bundle of eigen-lines of φ.
(c) $\mathcal{M} \simeq$ intermediate Jacobian fibration (Diaconescu-Donagi-Pantev)

A possible starting point

Some of Y_{Σ} : limits of toric $C Y \Rightarrow$ compute $Z_{\text {top }}$ with topological vertex ${ }^{1}$.

Basic example:

$$
\begin{aligned}
Z_{\text {top }} & =z^{\sigma^{2}-\theta_{1}^{2}-\theta_{2}^{2}} Z_{\text {out }} Z_{\text {in }} Z_{\text {inst }} \\
Z_{\text {out }} & =\frac{\mathcal{M}\left(Q_{F}\right) \mathcal{M}\left(Q_{3} Q_{4} Q_{F}\right)}{\prod_{i=3}^{4} \mathcal{M}\left(Q_{i}\right) \mathcal{M}\left(Q_{i} Q_{F}\right)}, \\
Z_{\text {in }} & =\frac{\mathcal{M}\left(Q_{F}\right) \mathcal{M}\left(Q_{1} Q_{2} Q_{F}\right)}{\prod_{i=1}^{2} \mathcal{M}\left(Q_{i}\right) \mathcal{M}\left(Q_{i} Q_{F}\right)} .
\end{aligned}
$$

- $\mathcal{M}(Q)$ is defined as $\mathcal{M}(Q)=\prod_{i, j=0}^{\infty}\left(1-Q q^{i+j+1}\right)^{-1}$ for $|q|<1$.
- $Z^{\text {inst }}$ is $d=5, \mathcal{N}=2, S U(2)$ instanton partition function ${ }^{2}$.
$Q_{i}=e^{-t_{i}}, t_{i}=\mathcal{O}(R)$ for $i=1,2,3,4, F \Rightarrow\left\{\begin{array}{l}\text { Limit from } 5 d \text { to } 4 d, \\ \text { mirror: local CY of class } \Sigma .\end{array}\right.$
AGT-correspondence: $Z^{\text {inst }} \sim$ conformal block of Virasoro VOA at $c=1$.

[^0]String dualities predict ${ }^{3}$ that $Z_{\text {top }}(t ; \hbar) \stackrel{\text { MNOP] }}{\sim} Z_{\text {DO-D2-D6 }}(t ; \hbar)$ is related to

$$
Z_{\text {dual }}(\xi, t ; \hbar):=Z_{\text {Do-D2-DADD } 6}(\xi, t ; \hbar)=\sum_{p \in H^{2}(Y, \mathbb{Z})} e^{p \xi} Z_{\mathrm{top}}(t+\hbar p ; \hbar):
$$

free fermion partition function on non-commutative*) deformation of Σ.
*) Equation $y^{2}=q(x)$ defining Σ admits canonical quantisation $y \rightarrow \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}$,
\rightsquigarrow quantum curve $\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}-q(x)$ m oper $\nabla_{\hbar}=\hbar \frac{\partial}{\partial x}-\left(\begin{array}{ll}0 & q \\ 1 & 0\end{array}\right)$.
And indeed ${ }^{4}$,

$$
Z_{\text {dual }}(\xi, t ; \hbar)=\mathcal{T}(t, \xi) \equiv Z_{\mathrm{ff}}(\xi, t ; \hbar),
$$

where $\mathcal{T}(t, \xi)$: Tau-function for isomonodromic deformations of "deformed quantum curves", $q(x) \rightarrow q_{\hbar}(x)=q(x)+\mathcal{O}(\hbar)$, canonical ξ-dependent deformation of $q(x)$ (more later).

[^1]$\mathcal{T}(t, \xi) \equiv Z_{\mathrm{ff}}(\xi, t ; \hbar)$ admits Fredholm determinant representation ${ }^{5}$ $\Rightarrow Z_{\text {dual }}$ and $Z_{\text {top }}$ are locally holomorphic functions of t.

But: Partition functions $Z_{\text {top }}$ are only piecewise holomorphic over \mathcal{B} !!!

Example: Flop [Konishi, Minabe]

Analytic continuation of $Z^{\text {top }}$ from chamber $|Q|<1$ to $|Q|>1$ is related to actual value as

$$
Z_{\text {top }} \rightarrow Z_{\text {top }} \frac{M(Q)}{M\left(Q^{-1}\right)} .
$$

More complicated wall-crossing relations expected to describe jumps across other walls in moduli space \mathcal{B}.

Main question: How do we continue $Z_{\text {top }}$ over all of moduli space? Important hint (Coman-Pomoni-...T.): Relation to abelianisation (Hollands-Neitzke).

[^2]Our proposal in a nutshell: (compare with Alexandrov, Persson, Pioline - later!)
Main geometric players:

- Moduli space $\mathcal{B} \equiv \mathcal{M}_{\text {cplx }}(Y)$ of complex structures,
- torus fibration \mathcal{M} over \mathcal{B} canonically associated to the special geometry on $\mathcal{B}(\sim$ intermediate Jacobian fibration).

There then exist

(A) a canonical one-parameter (\hbar) family of deformations of the complex structures on \mathcal{M}, defined by an atlas of Darboux coordinates
$x_{l}=\left(x_{i}, \check{x}^{2}\right)$ on $\mathcal{Z}:=\mathcal{M} \times \mathbb{C}^{*}$,
(B) a canonical pair $\left(\mathcal{L}_{\Theta}, \nabla_{\Theta}\right)$ consisting of
\mathcal{L}_{\ominus} : line bundle on \mathcal{Z}, transition functions: Difference generating functions of changes of coordinates x_{l},
∇_{Θ} : connection on \mathcal{L}_{Θ}, flat sections: Tau-functions $\mathcal{T}_{i}\left(\mathrm{x}_{\imath}, \check{x}^{2}\right)$,
defining the topological string partition functions via

$$
\mathcal{T}_{l}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{2}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{\mathrm{x}}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right) .
$$

(A) The BPS Riemann-Hilbert problem (Gaiotto-Moore-Neitzke; Bridgeland)

Define \hbar-deformed complex structures by atlas of coordinates on $\mathcal{Z} \simeq \mathcal{M} \times \mathbb{C}^{\times}$with charts $\left\{\mathcal{U}_{\imath} ; \imath \in \mathbb{I}\right\}$, Darboux coordinates

$$
x_{\imath}=\left(x_{l}, \breve{x}^{2}\right)=x_{l}(\hbar), \quad \Omega=\sum_{r=1}^{d} d x_{\imath}^{r} \wedge d \check{x}_{r}^{2}, \quad \text { such that }
$$

- changes of coordinates across $\left\{\hbar \in \mathbb{C}^{\times} ; a_{\gamma} / \hbar \in \mathbb{\mathbb { R } _ { - }}\right\}$ represented as

$$
X_{\gamma^{\prime}}^{\jmath}=X_{\gamma^{\prime}}^{\imath}\left(1-X_{\gamma}\right)^{\left\langle\gamma^{\prime}, \gamma\right\rangle \Omega(\gamma)}, \quad \begin{array}{ll}
& X_{\gamma}^{\jmath}=e^{2 \pi \mathrm{i}\left(\gamma, x_{2}\right\rangle}=e^{2 \pi \mathrm{i}\left(p_{r}^{2} x_{2}^{r}-q_{\imath}^{r} \check{x}_{r}^{2}\right)}, \\
\text { if } \gamma=\left(q_{\imath}^{1}, \ldots, q_{\imath}^{d} ; p_{1}^{2}, \ldots, p_{d}^{2}\right),
\end{array}
$$

determined by data $\Omega(\gamma)$ satisfying Kontsevich-Soibelman-WCF.

- asymptotic behaviour

$$
\mathrm{x}_{\imath}^{r} \sim \frac{1}{\hbar} a_{\imath}^{r}+\vartheta_{\imath}^{r}+\mathcal{O}(\hbar), \quad \check{x}_{\imath}^{r} \sim \frac{1}{\hbar} \check{a}_{r}^{\imath}+\breve{\vartheta}_{r}^{2}+\mathcal{O}(\hbar),
$$

with $\left(a_{\imath}^{r}, \breve{a}_{r}^{2}\right)$ coordinates on $\mathcal{B}, \theta_{r}^{\imath}:=\vartheta_{r}^{\imath}-\tau \cdot \breve{\vartheta}_{\imath}^{r}$ coordinates on Θ_{b}.

Solving the BPS-RH problem

$1^{\text {st }}$ Solution: NLIE (Gaiotto-Moore-Neitzke (GMN); Gaiotto)
$X_{\gamma}(\hbar)=X_{\gamma}^{\text {sf }}(\hbar) \exp \left[-\frac{1}{4 \pi \mathrm{i}} \sum_{\gamma^{\prime}}\left\langle\gamma, \gamma^{\prime}\right\rangle \Omega\left(\gamma^{\prime}\right) \int_{I_{\gamma^{\prime}}} \frac{d \hbar^{\prime}}{\hbar^{\prime}} \frac{\hbar^{\prime}+\hbar}{\hbar^{\prime}-\hbar} \log \left(1-X_{\gamma^{\prime}}\left(\hbar^{\prime}\right)\right)\right]$
with $\log X_{\gamma}^{\text {sf }}(\hbar)=\frac{1}{\hbar} a_{\gamma}+\vartheta_{\gamma}$. (Gaiotto: Conformal limit of GMN-NLIE)
$2^{\text {nd }}$ Solution: Quantum curves
Quantum curves: Opers, certain pairs $\left(\mathcal{E}, \nabla_{\hbar}\right)=($ bundle, connection $)$ differential operators $\hbar^{2} \partial_{x}^{2}-q_{\hbar}(x)$.

Coordinates $X_{\gamma}^{\imath}(\hbar), \check{X}_{l}^{\gamma}(\hbar)$ for space of monodromy data defined by Borel summation of exact WKB solution \rightsquigarrow charts \mathcal{U}_{2} labelled by spectral networks (Gaiotto-Moore-Neitzke; Hollands-Neitzke).

Focus on $2^{\text {nd }}$ solution: Quantum curves
Equation $y^{2}=q(x)$ defining Σ admits canonical quantisation $y \rightarrow \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial x}$,
\rightsquigarrow oper $\quad \hbar^{2} \frac{\partial^{2}}{\partial x^{2}}-q(x) \quad \leadsto \quad \nabla_{\hbar}=\hbar \frac{\partial}{\partial x}-\left(\begin{array}{ll}0 & q \\ 1 & 0\end{array}\right)$.
Observation: There is an essentially canonical generalisation \hbar-deforming pairs (Σ, \mathcal{D}), representable by opers with apparent singularities. $C=C_{0,4}$:

$$
\begin{aligned}
q_{\hbar}(x) & =q(x)-\hbar\left(\frac{u(u-1)}{x(x-1)(x-u)}+\frac{2 u-1}{x(x-1)} \frac{u-z}{x-z}\right) v+\frac{3}{4} \frac{\hbar^{2}}{(x-u)^{2}}, \\
q(x) & =\frac{a_{1}^{2}}{x^{2}}+\frac{a_{2}^{2}}{(x-z)^{2}}+\frac{a_{3}^{2}}{(x-1)^{2}}-\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{4}^{2}}{x(x-1)}+\frac{z(z-1)}{x(x-1)(x-z)} H .
\end{aligned}
$$

with $v^{2}=q(u)$. Pair $(u, v) \longleftrightarrow$ point on $\Sigma \longleftrightarrow$ divisor \mathcal{D}.

Conjecture

Solution of BPS-RH-problem given by composition of holonomy map with coordinates on character variety ${ }^{a}$ having Borel summable \hbar-expansion.
${ }^{a}$ coordinate ring generated by trace functions $\operatorname{tr}\left(\operatorname{Hol}\left(\nabla_{\hbar}\right)\right)$

Expansion in \hbar - exact WKB: Solutions to $\left(\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}-q_{\hbar}(x)\right) \chi(x)=0$,

$$
\chi_{ \pm}^{(b)}(x)=\frac{1}{\sqrt{S_{\text {odd }}(x)}} \exp \left[\pm \int^{x} d x^{\prime} S_{\text {odd }}\left(x^{\prime}\right)\right]
$$

with $S_{\text {odd }}=\frac{1}{2}\left(S^{(+)}-S^{(-)}\right), S^{(\pm)}(x)$ being formal series solutions to

$$
\begin{equation*}
q_{\hbar}=\lambda^{2}\left(S^{2}+S^{\prime}\right), \quad S(x)=\sum_{k=-1}^{\infty} \hbar^{k} S_{k}(x), \quad S_{-1}^{(\pm)}= \pm \sqrt{q_{0}} \tag{2}
\end{equation*}
$$

It is believed ${ }^{6}$ that series (2) is Borel-summable away from Stokes-lines,

$$
\operatorname{Im}(w(x))=\text { const. }, \quad w(x)=e^{-\mathrm{i} \arg (\lambda)} \int^{x} d x^{\prime} \sqrt{q\left(x^{\prime}\right)}
$$

Voros symbols $V_{\beta}:=\int_{\beta} d x S_{\text {odd }}(x)$ can be Borel-summable, then representing ingredients of the solution to the BPS-RH-problem.

[^3]Borel summability depends on the topology of Stokes graph formed by Stokes lines (determined by $q \sim$ point on \mathcal{B}). Two "extreme" cases:
FG Stokes graph u triangulation of C
FN Stokes graph u pants decomposition In between there exist sever-
 al hybrid types of graphs.

Case FG: D. Allegretti has proven conjecture of T. Bridgeland: $V_{\beta} \rightsquigarrow$ Fock-Goncharov (FG) $\left(x_{i}, \check{x}^{2}\right)$ coordinates solving BPS-RH problem.

Case FN: Coordinates (x_{i}, \check{x}^{2}) of Fenchel-Nielsen (FN) type
Extension to case FN needed for topological string applications:
Case FN: Real ${ }^{7}$ "skeleton" in \mathcal{B}, described by FN -type Stokes graphs.

- Transitions from FG-type to FN-type: "Juggle" (Gaiotto-Moore-Neitzke).

[^4]
Second half of our proposal:

There exists a canonical pair $\left(\mathcal{L}_{\Theta}, \nabla_{\Theta}\right)$ consisting of
\mathcal{L}_{Θ} : line bundle on \mathcal{Z}, transition functions: Difference generating functions of changes of coordinates x_{l}
∇_{Θ} : connection on \mathcal{L}_{Θ}, flat sections: Tau-functions $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{\imath}\right)$, determining $Z_{\text {top }}$ with the help of

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{\imath}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} e^{2 \pi \mathrm{i}\left(n, \check{x}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right) .
$$

This means that there are wall-crossing relations

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{\imath}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \check{x}^{\jmath}\right),
$$

on overlaps $\mathcal{U}_{\imath} \cap \mathcal{U}_{\jmath}$ of charts, with transition functions $F_{l \jmath}\left(x_{2}, x_{\jmath}\right)$: difference generating functions, defined by the changes of coordinates $x_{l}=x_{l}\left(x_{j}\right)$.

Difference generating functions:

$$
\mathcal{T}(\mathrm{x}, \check{\mathrm{x}})=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}(\mathrm{n}, \check{\mathrm{x}})} Z(\mathrm{x}-\mathrm{n}) \Leftrightarrow\left\{\begin{array}{l}
\mathcal{T}\left(\mathrm{x}, \check{\mathrm{x}}+\delta_{r}\right)=\mathcal{T}(\mathrm{x}, \check{\mathrm{x}}) \tag{3}\\
\mathcal{T}\left(\mathrm{x}+\delta_{r}, \check{\mathrm{x}}\right)=e^{2 \pi \mathrm{i} \check{x}_{r}} \mathcal{T}(\mathrm{x}, \check{\mathrm{x}})
\end{array}\right.
$$

Coordinates considered here are such that $\mathrm{x}_{l}=\mathrm{x}_{2}\left(\mathrm{x}_{j}, \check{x}^{\jmath}\right)$ can be solved for \check{x}^{\jmath} in $\mathcal{U}_{\imath} \cap \mathcal{U}_{j}$, defining $\check{x}^{\jmath}\left(\mathrm{x}_{2}, \mathrm{x}_{j}\right)$. Having defined tau-functions $\mathcal{T}_{l}\left(\mathrm{x}_{l}, \check{x}^{2}\right)$ and $\mathcal{T}_{j}\left(\mathrm{x}_{\jmath}, \check{x}^{\jmath}\right)$ on charts \mathcal{U}_{2} and \mathcal{U}_{j}, respectively, there is a relation of the form

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{\mathrm{x}}^{\imath}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \check{\mathrm{x}}^{\jmath}\right)
$$

on the overlaps $\mathcal{U}_{\imath j}=\mathcal{U}_{\imath} \cap \mathcal{U}_{j}$. To ensure that both \mathcal{T}_{\imath} and \mathcal{T}_{j} satisfy the relations (3), $F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right)$ must satisfy

$$
\begin{align*}
& F_{\imath \jmath}\left(\mathrm{x}_{\imath}+\delta_{r}, \mathrm{x}_{\jmath}\right)=e^{+2 \pi \mathrm{i} \mathrm{x}_{r}^{2}} F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right), \tag{4a}\\
& F_{\imath \jmath}\left(\mathrm{x}_{l}, \mathrm{x}_{\jmath}+\delta_{r}\right)=e^{-2 \pi \mathrm{i} \stackrel{\mathrm{x}}{r}_{r}} F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) . \tag{4b}
\end{align*}
$$

We will call functions $F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{j}\right)$ satisfying the relations (4) associated to a change of coordinates $x_{l}=x_{l}\left(x_{j}\right)$ difference generating functions.

Basic example:

$$
\begin{align*}
& X^{\prime}=\tau(X)=Y^{-1} \\
& Y^{\prime}=\tau(Y)=X\left(1+Y^{-1}\right)^{-2} \tag{5}
\end{align*}
$$

Introduce logarithmic variables $x, y, x^{\prime}, y^{\prime}$,

$$
X=e^{2 \pi \mathrm{i} x}, \quad Y=-e^{2 \pi \mathrm{i} y}, \quad X^{\prime}=-e^{2 \pi \mathrm{i} x^{\prime}}, \quad Y^{\prime}=e^{2 \pi \mathrm{i} y^{\prime}}
$$

The equations (5) can be solved for Y and Y^{\prime},

$$
Y\left(x, x^{\prime}\right)=-e^{-2 \pi \mathrm{i} x^{\prime}}, \quad Y^{\prime}(x, y)=e^{2 \pi \mathrm{i} x}\left(1-e^{2 \pi \mathrm{i} x^{\prime}}\right)^{-2}
$$

The difference generating function $\mathcal{J}\left(x, x^{\prime}\right)$ associated to (5) satisfies

$$
\frac{\mathcal{J}\left(x+1, x^{\prime}\right)}{\mathcal{J}(x, y)}=-\left(Y\left(x, x^{\prime}\right)\right)^{-1}, \quad \frac{\mathcal{J}\left(x, x^{\prime}+1\right)}{\mathcal{J}(x, y)}=Y^{\prime}\left(x, x^{\prime}\right)
$$

A function satisfying these properties is

$$
\mathcal{J}\left(x, x^{\prime}\right)=e^{2 \pi \mathrm{i} x x^{\prime}}\left(E\left(x^{\prime}\right)\right)^{2}, \quad E(z)=(2 \pi)^{-z} e^{-\frac{\pi \mathrm{i}}{2} z^{2}} \frac{G(1+z)}{G(1-z)}
$$

where $G(z)$ is the Barnes G-function satisfying $G(z+1)=\Gamma(z) G(z)$.

Tau-functions as solutions to the secondary RH problem

In arXiv:2004.04585 and work in progress we explain how to define solutions $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \breve{x}^{2}\right)$ to the secondary RH problem by combining

free fermion CFT with exact WKB.

Key features:

- Proposal covers real slice in \mathcal{B} represented by Jenkins-Strebel differentials using FN type coordinates,
- agrees with topological vertex calculations on the real slice, whenever available,
- and defines canonical extensions into strong coupling regions ${ }^{8}$ (for $C=C_{0,2}$ using important work of Its-Lisovyy-Tykhyy).

Exact WKB for quantum curves fixes normalisation ambiguities \Rightarrow the \hbar-deformation is "as canonical as possible".

[^5]The picture found in the class Σ examples suggests:
The higher genus corrections in the topological string theory on X are encoded in a canonical \hbar-deformation of the moduli space $\mathcal{M}_{\text {cplx }}(Y)$ of complex structures on the mirror Y of X.

There are hints that this picture may generalise beyond the class Σ examples:
(A) Relation to geometry of hypermultiplet moduli spaces - see below
(B) Relation to spectrum of BPS-states, geometry of space of stability conditions (T. Bridgeland)
(C) Relations to spectral determinants (Marino et.al.)?

Take-outs: (see below)

1) Relation classical-quantum
2) Relation with Theta-functions on intermediate Jacobian fibration
3) Interplay between $2 \mathrm{~d}-4 \mathrm{~d}$ wall-crossing and free fermion picture

(A) Relation to geometry to hypermultiplet moduli spaces

A similar characterisation of $Z_{\text {top }}$ follows from the proposal of Alexandrov, Persson, and Pioline (APP) for NS5-brane corrections to the geometry of hypermultiplet moduli spaces:

- SUSY \rightsquigarrow describe quantum corrections using twistor space geometry,

$$
\text { locally } \quad \mathcal{Z} \simeq \mathcal{M} \times \mathbb{P}^{1}
$$

having atlas of Darboux coordinates $x_{l}=\left(x_{l}, \breve{x}^{2}\right)$ on \mathcal{Z}.

- Combining mirror symmetry, S-duality, and twistor space geometry \Rightarrow quantum correction from one NS5-brane encoded in locally defined holomorphic functions $H_{\text {NS5 }}\left(\mathrm{x}_{2}, \breve{x}^{2}\right)$ having representation of the form

$$
H_{\mathrm{NS5}}\left(\mathrm{x}_{\imath}, \breve{\mathrm{x}}^{2}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} e^{2 \pi \mathrm{i}\left(n, \check{x}^{2}\right)} K_{\mathrm{NS5}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right) .
$$

- Using the DT-GW-relation (MNOP): $K_{\text {NS5 }}^{\imath}\left(\mathrm{x}_{l}\right) \sim Z_{\text {top }}^{\imath}\left(\mathrm{x}_{\imath}\right)$.

This suggests: $\left\{\begin{array}{l}\text { Our results } \rightsquigarrow \text { confirmation of APP-proposal, } \\ \text { APP-framework predicts generalisations of our results. }\end{array}\right.$

1) Relation classical-quantum:

There are several conjectures $/$ hints 9 that higher genus corrections in top. string theory can be described in terms of a non-commutative deformation of the geometric structures of \mathcal{M}, the intermediate Jacobian fibration over $\mathcal{B}=\mathcal{M}_{\mathrm{cplx}}(Y)$.

Recent work ${ }^{10} \Rightarrow$ Higher genus corrections (GW invariants) deform mirror of the cubic surface $\sim \mathcal{M}_{\mathrm{Hit}}\left(C_{0,4}\right)$ into a non-commutative deformation of $\mathcal{M}_{\text {char }}\left(C_{0,4}\right)$, the $S L(2)$-character variety for $C_{0,4}$.

Generators $\mathcal{L}_{i},\left\{\begin{array}{l}\text { corresponding to the trace functions } \operatorname{tr}\left(\operatorname{Hol}_{\gamma_{i}}\left(\nabla_{\hbar}\right)\right) \text { associated to } \\ \text { the curves around }\left(z_{1}, z_{2}\right),\left(z_{1}, z_{3}\right),\left(z_{2}, z_{3}\right), \text { for } i=s, t, u, \text { respectively. }\end{array}\right.$
Relations: $\quad\left\{\begin{array}{l}q \vartheta_{s} \vartheta_{t}-q^{-1} \vartheta_{t} \vartheta_{s}=\left(q^{2}-q^{-2}\right) \vartheta_{u}+\left(q-q^{-1}\right) R_{u}, \\ q \vartheta_{t} \vartheta_{u}-q^{-1} \vartheta_{u} \vartheta_{t}=\left(q^{2}-q^{-2}\right) \vartheta_{s}+\left(q-q^{-1}\right) R_{s}, \\ q \vartheta_{u} \vartheta_{s}-q^{-1} \vartheta_{s} \vartheta_{u}=\left(q^{2}-q^{-2}\right) \vartheta_{t}+\left(q-q^{-1}\right) R_{t}, \\ \vartheta_{s} \vartheta_{t} \vartheta_{u}+\left(q+q^{-1}\right)^{2}= \\ \quad=q^{2} \vartheta_{s}^{2}+q^{-2} \vartheta_{t}^{2}+q^{2} \vartheta_{u}^{2}+q R_{s} \vartheta_{s}+q^{-1} R_{t} \vartheta_{t}+q R_{u} \vartheta_{u}+R_{s t u} .\end{array}\right.$

[^6]Claim: The magic formula

$$
\begin{equation*}
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \check{x}^{l}\right)=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} e^{2 \pi \mathrm{i}\left(n, \check{x}^{2}\right)} Z_{\text {top }}^{\imath}\left(\mathrm{x}_{l}-\mathrm{n}\right) \quad \text { relates } \tag{6}
\end{equation*}
$$

(i) the \hbar-deformation of \mathcal{M} discussed in this talk to the
(ii) non-commutative deformation of \mathcal{M} from the previous slide.
(Main observation from lorgov-Lisovyy-J.T. : Transform (6) diagonalises the realisations of the quantised algebras of functions on $\mathcal{M}_{\text {char }}(C)$ at $q=-1$.)

The transformations (6) relate the gluing/wall-crossing relations $\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath},,^{2}\right)=F_{\imath \jmath}\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) \mathcal{T}_{\jmath}\left(\mathrm{x}_{\jmath}, \breve{x}^{\jmath}\right)$ to quantum relations ${ }^{11}$

$$
Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}\right)=\int d \mathrm{x}_{\jmath} K\left(\mathrm{x}_{\imath}, \mathrm{x}_{\jmath}\right) Z_{\mathrm{top}}^{\jmath}\left(\mathrm{x}_{\jmath}\right)
$$

\Rightarrow There indeed exists a quantisation of \mathcal{M} such that $Z_{\text {top }}^{\imath}$: wave-functions essentially determined by canonical Darboux coordinates $\left(\mathrm{x}_{\imath}, \check{x}^{2}\right)$.

[^7]In this sense:
The higher genus corrections in the topological string theory on X are encoded in a canonical quantum deformation of the moduli space $\mathcal{M}_{\text {cplx }}(Y)$ of complex structures on the mirror Y of X.

Furthermore:
Topological string partition functions $Z_{\text {top }}$: local sections of an infinite-dimensional vector bundle over \mathcal{B}, with transition functions being the quantized changes of coordinates between canonical local charts.

2) Relation with Theta-functions on intermediate Jacobian fibration

 Let us use the isomonodromic tau-functions to define $\Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar)$,$$
\begin{equation*}
\Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar):=\mathcal{T}(\sigma(\mathrm{a}, \theta ; \hbar), \tau(\mathrm{a}, \theta ; \hbar) ; z ; \hbar), \tag{7}
\end{equation*}
$$

when $d=1, \sigma \equiv x_{\imath}^{1}, \eta \equiv \check{x}_{1}^{2}, \theta=\theta_{1}^{2}$.

Claim

The limit

$$
\begin{equation*}
\log \Theta_{\Sigma}(\mathrm{a}, \theta ; z):=\lim _{\hbar \rightarrow 0}\left[\log \Theta_{\Sigma_{\hbar}}(\mathrm{a}, \theta ; z ; \hbar)-\log \mathcal{Z}_{\mathrm{top}}(\sigma(\mathrm{a}, \theta) ; z ; \hbar)\right] \tag{8}
\end{equation*}
$$

exists, with function $\Theta_{\Sigma}(\mathrm{a}, \theta ; z)$ defined in (8) being the theta function

$$
\begin{equation*}
\Theta_{\Sigma}(\mathrm{a} ; \theta ; z)=\sum_{n \in \mathbb{Z}} e^{2 \pi \mathrm{i} n \theta} e^{\pi \mathrm{i} n^{2} \tau_{\Sigma}(\mathrm{a})} \tag{9}
\end{equation*}
$$

with $\tau_{\Sigma}(\mathrm{a})$ related to $\mathcal{F}(\mathrm{a}, z)$ by $\tau_{\Sigma}=\frac{1}{2 \pi \mathrm{i}} \frac{\partial^{2} \mathcal{F}}{\partial \mathrm{a}^{2}}$.
Relation to quantisation of intermediate Jacobian (Witten, several others)?

3) Interplay between 2d-4d wall-crossing and free fermion picture

Background Y_{Σ} can be modified to open-closed background by inserting Aganagic-Vafa branes located at points of Σ. Generalisation of the formula

$$
\mathcal{T}_{\imath}\left(\mathrm{x}_{\imath}, \breve{\mathrm{x}}^{2}\right) \equiv\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle=\sum_{\mathrm{n} \in \mathbb{Z}^{d}} \mathrm{e}^{2 \pi \mathrm{i}\left(n, \check{\mathrm{x}}^{2}\right)} Z_{\mathrm{top}}^{\imath}\left(\mathrm{x}_{\imath}-\mathrm{n}\right)
$$

due to lorgov-Lisovyy-J.T. will then relate free fermion expectation values

$$
\Psi(x, y)=\langle\langle\bar{\psi}(x) \psi(y)\rangle\rangle=\frac{\left\langle\Omega, \bar{\psi}(x) \psi(y) \mathfrak{f}_{\psi}\right\rangle}{\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle}
$$

to expectation values of degenerate fields of the Virasoro algebra, representing the fermions of Aganagic-Dijkgraaf-Klemm-Marino-Vafa in our context.

Noting that $\Psi(x, y)$ represents the solution to the classical RH-problem associated to the tau-function $\mathcal{T}_{\imath}=\left\langle\Omega, \mathfrak{f}_{\psi}\right\rangle$ one sees that:
relation between classical RH-problem to BPS-RH problem: Example for 4d-2d wall crossing (GMN).

Exact WKB fixes the normalisations for $\Psi(x, y)$, via $4 d-2 d$ wall crossing determining the normalisations of \mathcal{T}_{\imath}.

[^0]: ${ }^{1}$ Aganagic, Klemm, Marino, Vafa
 ${ }^{2}$ Moore-Nekrasov-Shatashvili; Losev-Nekrasov-Shatashvili; Nekrasov

[^1]: ${ }^{3}$ Dijkgraaf-Hollands-Sulkowski-Vafa [DHSV] using Maulik-Nekrasov-Okounkov-Pandharipande [MNOP]
 ${ }^{4}$ Coman-Pomoni-J.T., based on Gamayun-lorgov-Lisovyy, lorgov-Lisovyy-J.T.

[^2]: ${ }^{5}$ Gavrylenko-Marshakov, Cafasso-Gavrylenko-Lisovyy

[^3]: ${ }^{6}$ Probably proven by Koike-Schäfke (unpublished), and by Nikolaev (to appear).

[^4]: ${ }^{7}$ Real values of \hbar and special coordinates a_{\imath}^{r}

[^5]: ${ }^{8}$ In the sense of Seiberg-Witten theory

[^6]: ${ }^{9}$ (Aganagic-Dijkgraaf-Vafa and collaborators; many others)
 ${ }^{10}$ P. Bousseau, arXiv:2009.02266, based on Gross-Hacking-Keel-Siebert, arXiv:1910.08427

[^7]: ${ }^{11}$ Alexandrov-Pioline; J.T., in preparation

