Miura Operators, Degenerate Fields and the M2-M5 Intersection

in progress with Davide Gaiotto

Miroslav Rapčák

UC Berkeley

UC Berkeley, November 30,2020

イロト イボト イヨト イヨト

1 / 40

Miroslav Rapčák | UC Berkeley | UC Berkeley, November 30,2020

1.1. $\mathfrak{gl}(1)$ current algebra

Let me start by recalling the simplest vertex operator algebra, the gl(1) current algebra (Heisenberg vertex operator algebra), generated by J(z) with operator product expansion

$$J(z)J(w)\sim -rac{1}{\epsilon_1\epsilon_2}rac{1}{(z-w)^2}.$$

Each vertex operator algebra leads to an associative algebra of its modes with commutation relations recovered from the operator product expansion by a simple contour-deformation argument. In our case,

$$J_m = \oint_0 \frac{dz}{2\pi i} z^m J(z)$$

with commutation relations given in terms of

$$[J_m, J_n] = -\frac{1}{\epsilon_1 \epsilon_2} \oint_0 \frac{dz}{2\pi i} \oint_z \frac{dw}{2\pi i} \frac{z^m w^n}{(z-w)^2} = -\frac{1}{\epsilon_1 \epsilon_2} m \delta_{m,-n}.$$

1.2. Vertex operators

The gl(1) current algebra admits a nice family of **highest-weight** modules induced from the highest-weight state $|u\rangle$ satisfying

$$J_0|u
angle = -rac{u}{\epsilon_1\epsilon_2}|u
angle, \qquad J_m|u
angle = 0, \qquad ext{for } m>0,$$

with a tower of states generated by the action of negative modes

$$\begin{array}{ll} J_{-1}|u\rangle, & & \\ J_{-2}|u\rangle, & & J_{-1}^2|u\rangle, & \\ J_{-3}|u\rangle, & & J_{-2}J_{-1}|u\rangle, & & J_{-1}^3|u\rangle. \end{array}$$

We can now define the vertex operator

$$\exp[a\phi(z)] =: \exp[a\sum_{n\neq 0} \frac{J_n}{n} z^{-n}]T_a:,$$

with $\phi(z)$ viewed as $J(z) = \partial \phi(z)$. We introduced T_a that commutes with J_n and shifts the highest weight $T_a|u\rangle = |u + a\rangle$ and :: is the normal ordering that orders J_n in increasing value of n. The vertex operator is an elementary object in the theory of vertex operator algebras and satisfies

$$J(z) : \exp[a\phi(z)] : \sim -\frac{a}{\epsilon_1\epsilon_2} \frac{:\exp[a\phi(z)] :}{z-w},$$
$$\exp[a\phi(z)] :: \exp[b\phi(w)] : \sim (z-w)^{-\frac{ab}{\epsilon_1\epsilon_2}} :\exp[a\phi(z) + b\phi(w)] :.$$

Furthermore, we obviously have : $\exp[a\phi(0)]$: $|0\rangle = |a\rangle$.

・ () ・ (見) ・ (見) ・ (口)

1.3. First trivially-sounding observation

Objects

$$\exp[-\epsilon_2\phi(z)]|0
angle$$
 and $\exp[\epsilon_2\phi(z)]|0
angle,$

thought of as formal power series in z with coefficients in the module induced from $|\epsilon_2\rangle$, generate a right module for the $\mathfrak{gl}(1)$ current algebra generated by the action of J_n but also a right/left module for the algebra generated by

$$t_{0,n}=rac{z^n}{\epsilon_1},\qquad t_{2,0}=\epsilon_1\partial^2.$$

Recall that differential operators act on functions from the right by

$$f(z) \circ \partial = -\partial f(z).$$

Note also that the general $t_{m,n} \sim z^m \partial^n$ can be obtained by commuting $t_{0,n}$ with $t_{2,0}$.

1.3. The Miura operator

Let us now introduce another important object from the theory of vertex operator algebras, the **Miura operator**

$$\epsilon_3\partial - \epsilon_1\epsilon_2 J(z) = \epsilon_3\partial - \epsilon_1\epsilon_2\sum_{m=-\infty}^{\infty} J_n z^{-n-1},$$

thought of as a differential operator in one variable with coefficients in the $\mathfrak{gl}(1)$ current algebra. Composition of such Miura operators is known to lead to other vertex operator algebras realized in terms of an embedding inside tensor products of $\mathfrak{gl}(1)$ current algebras as I will review later.

1.4. Second trivially-sounding observation

The object

$$(\epsilon_3\partial - \epsilon_1\epsilon_2 J(z))|0\rangle,$$

thought of as a differential operator with coefficients in the module induced from $|0\rangle$ generates a module for J_n and a bimodule for the algebra generated by

$$t_{0,n}=rac{z^n}{\epsilon_3},\qquad t_{2,0}=\epsilon_3\partial^2.$$

since we can act from the right and from the left.

イロト イポト イヨト イヨト

1.5. Trivially-sounding observation becoming deep

The trivially-sounding observations lead to very deep statements if we realize that:

- 1 M2-brane on $\mathbb{R} \times \mathbb{C}_{\epsilon_3}$ leads to a topological quantum mechanics on \mathbb{R} with the algebra of (Coulomb-branch) operators $\frac{z^n}{\epsilon_3}$ and $\epsilon_3 \partial^2$.
- 2 M5-brane on C × C_{ϵ1} × C_{ϵ2} leads to a holomorphic quantum field theory on C with an algebra of operators generated by J_m.

Vertex operators $\exp[\epsilon_1\phi(z)]|0\rangle$ and $\exp[-\epsilon_1\phi(z)]|0\rangle$ and the Miura operator $(\epsilon_3\partial - \epsilon_1\epsilon_2J(z))|0\rangle$ generate modules for both. The purpose of this talk is to convince you that they can be interpreted as elementary building blocks of "gauge invariant" operators describing M2-M5 brane intersections. This leads to deep connections between W-algebras associated to M5-branes and Coulomb-branch algebras associated to M2-branes with consequences such as categorification of the relation between Donaldson-Thomas and Pandharipande-Thomas topological vertices and more.

2.1. M2-brane and M5-brane theories

Let us introduce the following physical system:

M-theory	\mathbb{C}	\mathbb{C}	\mathbb{R}	\mathbb{C}_{ϵ_1}	\mathbb{C}_{ϵ_2}	\mathbb{C}_{ϵ_3}
N ₁ M5	×				×	X
N ₂ M5	×			×		×
N ₃ M5	×			×	×	
<i>n</i> ₁ M2			×	Х		
n ₂ M2			\times		×	
n ₃ M2			×			×

We turn on Ω -background along three complex directions with parameters ϵ_i satisfying $\epsilon_1 + \epsilon_2 + \epsilon_3 = 0$. We place M2 branes along $\mathbb{R} \times \mathbb{C}_{\epsilon_i}$ and M5 branes along $\mathbb{C} \times \mathbb{C}_{\epsilon_i} \times \mathbb{C}_{\epsilon_j}$. From the perspective of the directions $\mathbb{C}^2 \times \mathbb{R}$, M5-branes lead to surface operators S_{N_1,N_2,N_3} living on \mathbb{C} and M2-branes lead to line operators L_{n_1,n_2,n_3} living on \mathbb{R} .

- The world-volume theory on N_3 M5-branes in Ω -background leads to vertex operator algebras $Y_{0,0,N_3}$ on \mathbb{C} [Alday-Gaiotto-Tachikawa (2009), Wyllard (2009)]. There exists a three-parameter generalization Y_{N_1,N_2,N_3} associated to the general configuration of M5-branes leading to S_{N_1,N_2,N_3} form our previous work [Gaiotto-MR (2017)].
- A 3d supersymmetric gauge theory in Ω background leads to a Coulomb branch algebra of local operators on ℝ [Oh-Yagi (2019), Jeong (2019), Dedushenko (2019)]. The theory associated to n₃ M2-branes on C_{ε3} × ℝ has a UV completion in terms of an ADHM quiver gauge theory with the Coulomb-branch algebra A_{0,0,n3} studied by [Kodera-Nakajima (2016), Costello (2016)]. One of the results of our today's discussion is a three-parameter generalization of these algebras A_{n1,n2,n3} associated to the general configurations of M2-branes L_{n1,n2,n3} in the M-theory picture above [Gaiotto-MR (2020)].

イロト イポト イヨト イヨト

2.2. Coupling to the twisted M-theory

According to the proposal of [Costello (2017)], twisted M-theory on $\mathbb{C}^2 \times \mathbb{R} \times \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times \mathbb{C}_{\epsilon_3}$ is described in terms of a $\mathfrak{gl}(1)$ 5d non-commutative Chern-Simons-like theory with the action

$$\frac{1}{\epsilon_1}\int (A*_{\epsilon_3} dA + A*_{\epsilon_3} A*_{\epsilon_3} A)dz_1dz_2$$

living on $\mathbb{C}^2 \times \mathbb{R}$, where $*_{\epsilon_3}$ is a non-commutative deformation of the standard wedge product. The 5d Chern-Simons theory (before the ϵ_3 deformation) has a large gauge symmetry

$$A \rightarrow A + d\phi$$
, for $\phi \in \mathbb{C}[z_1, z_2]$.

The non-commutative deformation leads to an obvious deformation of the algebra of gauge transformations

$$[z_1,z_2]=\epsilon_3.$$

 S_{N_1,N_2,N_3} and L_{n_1,n_2,n_3} must admit a consistent coupling to this theory!

Classically, one expects that the line L_{n_1,n_2,n_3} coming from M2-branes can couple to $\partial_{\overline{z}_1}^m \partial_{\overline{z}_2}^n A_t$ by $t_{m,n}$ satisfying relations of the gauge algebra. As argued by [Costello (2018)], this expectation receives quantum corrections and vanishing of gauge anomalies actually requires $t_{m,n}$ to satisfy relations of an algebra \mathcal{A} deforming the classical gauge algebra above. Algebra \mathcal{A} is an associative algebra generated by $t_{2,0}$ and $t_{0,n}$ with other generators $t_{m,n}$ defined in terms of

$$[t_{2,0}, t_{m,n}] = 2nt_{m+1,n-1}$$

and relations determined using

$$\begin{bmatrix} t_{3,0}, t_{0,d} \end{bmatrix} = 3d t_{2,d-1} + \sigma_2 \frac{d(d-1)(d-2)}{4} t_{0,d-3} \\ + \frac{3}{2} \sigma_3 \sum_{m=0}^{d-3} (m+1)(d-m-2) t_{0,m} t_{0,d-3-m},$$

introducing an explicit dependence on $\sigma_3 = \epsilon_1 \epsilon_2 \epsilon_3, \sigma_2 = \epsilon_1 \epsilon_2 + \epsilon_1 \epsilon_3 + \epsilon_2 \epsilon_3$

Note that A admits a truncation map to the Coulomb-branch algebra $A_{0,0,1}$ associated to a single M2-brane

$$I_{0,0,1}:\mathcal{A}
ightarrow A_{0,0,1}$$

given by

$$l_{0,0,1}: t_{0,n} \rightarrow \frac{1}{\epsilon_3} z^n$$
 and $l_{0,0,1}: t_{2,0} \rightarrow \epsilon_3 \partial^2$.

Analogously, permuting parameters $\epsilon_1, \epsilon_2, \epsilon_3$ gives rise to three elementary truncation maps $l_{1,0,0}, l_{0,1,0}, l_{0,0,1}$.

イロト イポト イヨト イヨト

An analogous argument from [Costello (2017)] leads to a condition on local operators of surface defects S_{N_1,N_2,N_3} that should admit a consistent coupling to the 5d Chern-Simons theory. In particular, vanishing of gauge anomalies requires surface defects S_{N_1,N_2,N_3} to couple to $\partial_{z_1}^n A$ via operators $W_n(z)$ that satisfy the algebra \mathcal{W}_{∞} generated by infinitely many fields W_1, W_2, W_3, \ldots studied by many people [Shiffman-Vasserot (2012), Gaberdiel-Gopakumar (2012), Procházka (2015),...] and satisfying a system of operator product expansions

$$\begin{split} W_1(z)W_1(w) &\sim \frac{\psi_0}{(z-w)^2}, \\ W_2(z)W_1(w) &\sim \frac{W_1(w)}{(z-w)^2} + \frac{\partial W_1(w)}{z-w}, \\ W_2(z)W_2(w) &\sim -\frac{\sigma_2\psi_0 + \sigma_3^2\psi_0^3}{2}\frac{1}{(z-w)^4} + \frac{2W_2(w)}{(z-w)^2} + \frac{\partial W_2(w)}{z-w} \end{split}$$

depending on $\sigma_3 = \epsilon_1 \epsilon_2 \epsilon_3, \sigma_2 = \epsilon_1 \epsilon_2 + \epsilon_1 \epsilon_3 + \epsilon_2 \epsilon_3$ and parameter $\psi_0 = -\infty$

Note that the $\mathfrak{gl}(1)$ current algebra associated to $S_{0,0,1}$ satisfy relations of \mathcal{W}_{∞} since there exists a truncation map

$$S_{0,0,1}:\mathcal{W}_\infty o Y_{0,0,1}$$

given by

$$egin{array}{rcl} S_{0,0,1} & : & W_1(z)
ightarrow J(z), \ S_{0,0,1} & : & W_2(z)
ightarrow -rac{\epsilon_1\epsilon_2}{2}:JJ:(z), \ S_{0,0,1} & : & W_n(z)
ightarrow 0, & ext{ for } n>2, \end{array}$$

with normalization

$$J(z)J(w) \sim -rac{1}{\epsilon_1\epsilon_2}rac{1}{(z-w)^2}.$$

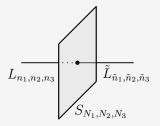
Similarly, there exist elementary truncation maps $S_{1,0,0}$ and $S_{0,1,0}$ obtained by permutation of ϵ_i and leading to $Y_{1,0,0}$ and $Y_{0,1,0}$. As we will see in later sections, there also exist truncation maps S_{N_1,N_2,N_3} and L_{n_1,n_2,n_3} from \mathcal{W}_{∞} and \mathcal{A} to the algebra of operators Y_{N_1,N_2,N_3} on surface S_{N_1,N_2,N_3} and the algebra of operators A_{n_1,n_2,n_3} on line L_{n_1,n_2,n_3} :

$$\begin{aligned} S_{N_1,N_2,N_3} &: & \mathcal{W}_{\infty} \to Y_{N_1,N_2,N_3}, \\ L_{n_1,n_2,n_3} &: & \mathcal{A} \to A_{n_1,n_2,n_3}. \end{aligned}$$

The elementary truncations are sufficient for the discussion of elementary building blocks of gauge-invariant junctions.

(日) (同) (三) (三)

As pointed out by [Gaiotto-Oh (2019)], one should be able to associate gauge-invariant operators \mathcal{O} also to intersections of L_{n_1,n_2,n_3} , $\tilde{L}_{\tilde{n}_1,\tilde{n}_2,\tilde{n}_3}$ and S_{N_1,N_2,N_3} defects, corresponding to the following configuration:



One can expect that the gauge-invariance condition receives contributions from all the operators involved and deforms the naive constraint

$$\mathcal{O}\tilde{t}_{a,b}=(t_{a,b}+W_{a,b})\mathcal{O}.$$

The main objective of our work was to identify the precise condition and explore its mathematical implications.

3. Gauge-invariant junctions

3.1. The $\mathcal{A} \to \mathcal{A} \otimes \mathcal{W}_\infty$ coproduct

It is straightforward to check that formulas

$$\tilde{t}_{0,n} \rightarrow t_{0,n} + W_{1,n}$$

$$\tilde{t}_{2,0} \rightarrow t_{2,0} + V_{-2} + \sigma_3 \sum_{n=1}^{\infty} n W_{1,-n-1} W_{1,n-1} + 2\sigma_3 \sum_{n=1}^{\infty} n W_{1,-n-1} t_{0,n-1},$$

where

$$V(z) = W_3 + rac{2}{\psi_0} : W_1 W_2 : -rac{2}{3} rac{1}{\psi_0^2} : W_1 W_1 W_1 :,$$

define a coproduct

$$\Delta_{\mathcal{A},\mathcal{W}_{\infty}}:\mathcal{A}\to\mathcal{A}\otimes\mathcal{W}_{\infty}.$$

イロト イポト イヨト イヨト

Miura Operators, Degenerate Fields and the M2-M5 Intersection

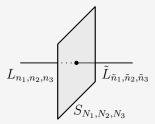
3. Gauge-invariant junctions

3.2. The gauge invariant junctions

We have now all the ingredients to state the gauge-invariance condition deforming the naive

$$\mathcal{O}\tilde{t}_{a,b}=(t_{a,b}+W_{a,b})\mathcal{O},$$

expected to be satisfied by the operator \mathcal{O} describing the junction:



We propose it to have the following form:

$$\mathcal{O} \circ L_{\tilde{n}_1,\tilde{n}_2,\tilde{n}_3}(t_{m,n}) = (L_{n_1,n_2,n_3} \otimes S_{N_1,N_2,N_3})(\Delta_{A,\mathcal{W}_{\infty}}(t_{m,n})) \circ \mathcal{O}.$$

3. Gauge-invariant junctions

Let me decodify the condition

$$\mathcal{O} \circ L_{ ilde{n}_1, ilde{n}_2, ilde{n}_3}(t_{m,n}) = (L_{n_1,n_2,n_3} \otimes S_{N_1,N_2,N_3})(\Delta_{A,\mathcal{W}_\infty}(t_{m,n})) \circ \mathcal{O}$$

diagrammatically. We start with a generator $t_{m,n}$ and map it to A_{n_1,n_2,n_3} and $A_{\tilde{n}_1,\tilde{n}_2,\tilde{n}_3} \otimes Y_{N_1,N_2,N_3}$ via

$$\begin{array}{cccc} \mathcal{A} & \xrightarrow{\Delta_{\mathcal{A},\mathcal{W}_{\infty}}} & \mathcal{A} & \otimes & \mathcal{W}_{\infty} \\ & & \downarrow L_{n_{1},n_{2},n_{3}} & & \downarrow L_{\tilde{n}_{1},\tilde{n}_{2},\tilde{n}_{3}} & \downarrow S_{N_{1},N_{2},N_{3}} \\ \mathcal{A}_{n_{1},n_{2},n_{3}} & & \mathcal{A}_{\tilde{n}_{1},\tilde{n}_{2},\tilde{n}_{3}} & \otimes & Y_{N_{1},N_{2},N_{3}} \end{array}$$

The gauge-invariance condition is a statement that the operator O intertwines the right action of $t_{m,n}$ mapped by the arrow on the left of the diagram with the left action of $t_{m,n}$ mapped by the sequence of arrows on the right of the diagram.

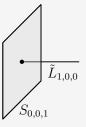
4.1. Elementary junctions

Many key objects in the theory of VOAs can be now given a new interpretation in terms of a gauge-invariant junction! In this section, we are going to provide such a re-interpretation for elements $\exp[-\epsilon_2\phi(z)]|0\rangle$, $\exp[\epsilon_2\phi(z)]|0\rangle$ and $(\epsilon_3\partial - \epsilon_1\epsilon_2J(z))|0\rangle$ introduced in the introduction. As we will see later (and as obvious from the M-theory picture), these serve as elementary building blocks of more complicated junctions.

イロト イポト イヨト イヨト

4.2. The vertex operator $\exp[-\epsilon_2\phi(z)]$

Let us start with the example of $\mathcal{O} = \exp[-\epsilon_2 \phi(z)]$ that we associate to:



Let us test its gauge invariance. Composing the coproduct $\Delta_{\mathcal{A},\mathcal{W}_{\infty}}$ with $l_{0,0,0}$ produces an embedding $\Delta_{\mathcal{W}_{\infty}}: \mathcal{A} \to \mathcal{W}_{\infty}$ and the gauge-invariance condition simplifies to

$$\mathcal{O}|0
angle\circ L_{1,0,0}(t_{a,b})=S_{0,0,1}(\Delta_{\mathcal{W}_{\infty}}(t_{a,b}))\circ\mathcal{O}|0
angle.$$

The operator $\mathcal{O}|0\rangle$ should intertwine the right action of $A_{1,0,0}$ and the action of $A_{1,0,0}$ via its image in $Y_{0,0,1}$.

It is straightforward to check that indeed

$$\mathcal{O}|0\rangle \frac{1}{\epsilon_1} z^n = J_n \mathcal{O}|0\rangle,$$

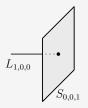
$$\mathcal{O}|0\rangle \epsilon_1 \partial^2 = \left(V_{-2} + \frac{\sigma_3}{2} \sum_{n=-\infty}^{\infty} |n| : J_{-n-1} J_{n-1} : \right) \mathcal{O}|0\rangle$$

with relevant truncation maps given by

$$\begin{split} l_{1,0,0}(t_{0,n}) &= \frac{1}{\epsilon_1} z^n, \\ l_{1,0,0}(t_{2,0}) &= \epsilon_1 \partial^2, \\ l_{0,0,0} \otimes S_{0,0,1}(\Delta_{\mathcal{A},\mathcal{W}_{\infty}} t_{0,n}) &= J_n, \\ l_{0,0,0} \otimes S_{0,0,1}(\Delta_{\mathcal{A},\mathcal{W}_{\infty}} (t_{2,0})) &= V_{-2} + \frac{\sigma_3}{2} \sum_{n=-\infty}^{\infty} |n| : J_{-n-1} J_{n-1} : . \end{split}$$

4.3. The vertex operator $\exp[\epsilon_2 \phi(z)]$

Let us now look at the example of $\mathcal{O} = \exp[\epsilon_2 \phi(z)]$ that we associate to the junction



The generator $t_{m,n}$ now acts trivially from the right but the action from the left becomes more complicated.

イロト イポト イヨト イヨト

It is straightforward to check that indeed

$$0 = \left(\frac{z^{n}}{\epsilon_{1}} + J_{n}\right) \mathcal{O}|0\rangle,$$

$$0 = \left(\epsilon_{1}\partial^{2} + V_{-2} + \sigma_{3}\sum_{m=0}^{\infty} mJ_{-n-1}J_{n-1} + 2\epsilon_{2}\epsilon_{3}\sum_{m=0}^{\infty} mz^{m-1}J_{-n-1}\right) \mathcal{O}|0\rangle$$

with relevant truncation maps given by

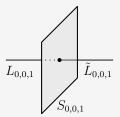
$$\begin{split} L_{0,0,0}(t_{0,n}) &= 0, \qquad L_{0,0,0}(t_{2,0}) = 0, \\ L_{1,0,0} \otimes S_{0,0,1}(\Delta_{\mathcal{A},\mathcal{W}_{\infty}}t_{0,n}) &= \frac{1}{\epsilon_1}z^n + J_n, \\ L_{1,0,0} \otimes S_{0,0,1}(\Delta_{\mathcal{A},\mathcal{W}_{\infty}}(t_{2,0})) &= \epsilon_1\partial^2 + V_{-2} + \sigma_3\sum_{m=0}^{\infty} mJ_{-n-1}J_{n-1} \\ &+ 2\epsilon_2\epsilon_3\sum_{m=0}^{\infty} mz^{m-1}J_{-n-1}. \end{split}$$

4.4. The Miura operator $\epsilon_3\partial - \epsilon_1\epsilon_2 J(z)$

The last elementary junction can be identified with the Miura operator

$$\mathcal{O} = \epsilon_3 \partial - \epsilon_1 \epsilon_2 J(z)$$

that we associate to the intersection



Note also that intersection of $S_{0,0,1}$ with lines of different orientation, such as $L_{1,0,0}$, can be obtained by colliding the two endpoints discussed above. This observation turns out to lead to a new relation between Miura operators and degenerate field as we will see later.

In the present case, both the left and the right line operators are non-trivial, leading to a condition combining the previous two cases

$$\mathcal{O}|0\rangle \frac{1}{\epsilon_3} z^n = \left(\frac{1}{\epsilon_3} z^n + J_n\right) \mathcal{O}|0\rangle, \\ \mathcal{O}|0\rangle \epsilon_3 \partial^2 = \left(\epsilon_3 \partial^2 + V_{-2} + \epsilon_1 \epsilon_2 \sum_{n=1}^{\infty} |n| J_{-n-1} z^{n-1}\right) \mathcal{O}|0\rangle$$

that can be checked by a straightforward calculation.

5.1. Fusion in topological direction

Let us now discuss various examples of composing elementary junctions. The Miura operator serves in the literature as an object that produces algebras $Y_{0,0,N_3}$ by so-called Miura transformation. Let us first look at the Miura transformation for $N_3 = 2$. Taking a product of two Miura operators

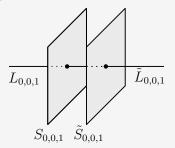
$$= (\epsilon_3 \partial)^2 \underbrace{-\epsilon_1 \epsilon_2 (J(z) + J(z))}_{U_1(z)} \epsilon_3 \partial \underbrace{+(\epsilon_1 \epsilon_2)^2 J_1 J_2(z) - \epsilon_1 \epsilon_2 \tilde{J}(z))}_{U_2(z)},$$

one can show that fields U_1 , U_2 generate $Y_{0,0,2}$, i.e. the Virasoro algebra tensored with the $\mathfrak{gl}(1)$ current algebra. The Miura transformation above gives a coproduct $Y_{0,0,2} \rightarrow Y_{0,0,1} \otimes Y_{0,0,1}$.

From our new perspective, it is natural to expect that

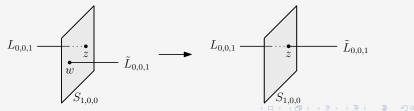
$$\mathcal{O} = (\epsilon_3 \partial - \epsilon_1 \epsilon_2 J(z))(\epsilon_3 \partial - \epsilon_1 \epsilon_2 \widetilde{J}(z))$$

describes a junction between $S_{0,0,2}$ coming from the fusion of $S_{0,0,1}$ and $\tilde{S}_{0,0,1}$ with the line $L_{0,0,1}$ as in the figure.



Analogously to the simple example of a single Miura operator, $\mathcal{O}|0\rangle$ indeed satisfies the gauge-invariance condition with $Y_{0,0,2}$ generators acting via $Y_{0,0,2} \rightarrow Y_{0,0,1} \otimes Y_{0,0,1}$ from the Miura transformation.

We have just seen that composition of two elementary Miura operators produces a gauge-invariant junction between $S_{0,0,2}$ and $L_{0,0,1}$. Analogously, composing N_3 elementary Miura operators produces a gauge-invariant junction between $S_{0,0,N_3}$ and $L_{0,0,1}$ on which the $Y_{0,0,N_3}$ algebra acts via $Y_{0,0,N_3} \rightarrow (Y_{0,0,1})^{N_3}$ coming from the Miura transformation involving N_3 elementary Miura operators. To obtain an operator associated to the general intersection of S_{N_1,N_2,N_3} with $L_{0,0,1}$, we need to work a bit harder. Let us start with $S_{1,0,0}$, where the line $L_{0,0,1}$ can actually split into $\exp[-\epsilon_2\phi(z)]$ associated to $L_{0.0.1}$ ending from the right and $\exp[\epsilon_2\phi(w)]$ associated to the line $L_{0,0,1}$ ending from the left.



By taking a contour integral of the product of the two vertex operators

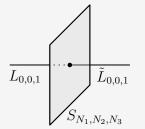
$$\oint dw \exp[\epsilon_2 \phi(z)] \exp[-\epsilon_2 \phi(w)] = \oint \frac{dw}{(w-z)^{\frac{\epsilon_1}{\epsilon_3}+1}} \exp[\epsilon_2 \phi(z) - \epsilon_2 \phi(w)],$$

we can be re-written as

$$\propto : \exp[\epsilon_2 \phi(z)] (\epsilon_3 \partial)^{\frac{\epsilon_1}{\epsilon_3}} \exp[-\epsilon_2 \phi(z)] : \propto (\epsilon_3 \partial)^{\frac{\epsilon_1}{\epsilon_3}} - \epsilon_1 \epsilon_2 J(z) (\epsilon_3 \partial)^{\frac{\epsilon_3}{\epsilon_1} - 1} + \frac{\epsilon_1 (\epsilon_1 - \epsilon_3)}{2} (\epsilon_2^2 J^2(z) - \epsilon_2 \partial J(z)) (\epsilon_3 \partial)^{\frac{\epsilon_3}{\epsilon_1} - 2} + \dots,$$

and surprisingly recover the generalized Miura operator form [Procházka-MR (2018), Procházka (2018)] with fields U_i multiplying $(\epsilon_1\partial)^{\frac{\epsilon_3}{\epsilon_1}-i}$ satisfying OPEs of \mathcal{W}_{∞} and producing the truncation map $S_{1,0,0}: \mathcal{W}_{\infty} \to Y_{1,0,0}$. An analogous calculation produces the Miura operator associated to the gauge-invariant junction of $S_{0,1,0}$ with $L_{0,0,1}$.

Composition of the elementary Miura operator describing the gauge-invariant junction of $L_{0,0,1}$ with $S_{0,0,1}$ and the generalized Miura operators describing the gauge-invariant junction of $L_{0,0,1}$ with $S_{1,0,0}$ and $S_{0,1,0}$ produces a (conjecturally) gauge-invariant intersection of $L_{0,0,1}$ with general S_{N_1,N_2,N_3} !

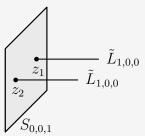


The standard Miura transformation can be thought of as probing a system of M5-brane algebras by a an $L_{0,0,1}$ probe. This explains why the description of \mathcal{W}_{∞} in terms of the U_i basis from Miura operators breaks the explicit triality symmetry of \mathcal{W}_{∞} .

Miroslav Rapčák | UC Berkeley | UC Berkeley, November 30,2020

5.2. Fusion in holomorphic direction

I would like to now briefly discuss fusion of line operators in the holomorphic direction. The simplest example would be the one in the figure



with the gauge-invariant operator

$$\mathcal{O} = \exp[-\epsilon_2 \phi(z_1)] \exp[-\epsilon_2 \phi(z_2)].$$

To probe the gauge-invariance, we need to identify algebras A_{n_1,n_2,n_3} .

Analogously to the coproduct producing Y_{N_1,N_2,N_3} , there exists a coproduct that can be used to find an explicit realization of A_{n_1,n_2,n_3} starting from $A_{1,0,0}$, $A_{0,1,0}$ and $A_{0,0,1}$. Let me skip the details and write directly:

$$t_{0,n} = \epsilon_1^{-1} \sum_{i=1}^{n_1} z_i^d + \epsilon_2^{-1} \sum_{i=1}^{n_2} (z_i')^d + \epsilon_3^{-1} \sum_{i=1}^{n_3} (z_i'')^d,$$

$$t_{2,0} = \epsilon_1 \sum_{i=1}^{n_1} \partial_{z_i}^2 + \frac{\epsilon_2 \epsilon_3}{\epsilon_1} \sum_{i < j} \frac{2}{(z_i - z_j)^2} + \epsilon_1 \sum_{i,j} \frac{2}{(z_i' - z_j'')^2} + \epsilon_2 \sum_{i=1}^{n_2} \partial_{z_i'}^2 + \frac{\epsilon_1 \epsilon_3}{\epsilon_2} \sum_{i < j} \frac{2}{(z_i' - z_j')^2} + \epsilon_2 \sum_{i,j} \frac{2}{(z_i - z_j'')^2} + \epsilon_3 \sum_{i=1}^{n_3} \partial_{z_i''}^2 + \frac{\epsilon_1 \epsilon_2}{\epsilon_3} \sum_{i < j} \frac{2}{(z_i'' - z_j'')^2} + \epsilon_3 \sum_{i,j} \frac{2}{(z_i - z_j')^2}.$$

Note that $t_{n,0}$ form a system of mutually commuting differential operators and generalizes the well-known Calogero-Moser integrable system!

Miroslav Rapčák UC Berkeley UC Berkeley, November 30,2020

Miura Operators, Degenerate Fields and the M2-M5 Intersection

5. Composing gauge-invariant junctions

Going back to our figure, we can compose two vertex operators at a given location and show that

$$\mathcal{O} = \exp[-\epsilon_1 \phi(z_1)] \exp[-\epsilon_1 \phi(z_2)]$$

satisfies

$$J_n \mathcal{O}|0\rangle = \mathcal{O}|0\rangle \frac{z_1^n + z_2^n}{\epsilon_1}$$

and

$$\begin{pmatrix} \frac{\epsilon_1^2 \epsilon_2^2}{2} (J^3)_{-2} + \frac{\sigma_3}{2} \sum_{n=-\infty}^{\infty} |n| : J_{-n-1} J_{n-1} : \end{pmatrix} \mathcal{O}|0\rangle$$
$$= \mathcal{O}|0\rangle \left(\epsilon_1 \partial_1^2 + \epsilon_1 \partial_1^2 + \frac{\epsilon_2 \epsilon_3}{\epsilon_1} \frac{2}{(z_1 - z_2)^2} \right)$$

as expected from the gauge-invariance condition.

Miroslav Rapčák UC Berkeley UC Berkeley, November 30,2020

Analogously, we can fuse n_1 lines with orientation along \mathbb{C}_{ϵ_1} and n_2 lines with orientation along \mathbb{C}_{ϵ_2} ending from the right to produce an operator intertwining the action of $t_{m,n}$ embedded inside $Y_{0,0,1}$ with the action of the algebra $A_{n_1,n_2,0}$ realized in terms of the differential operators above. Generally, we expect that this leads to a gauge-invariant endpoint of $L_{n_1,n_2,0}$ on $S_{0,0,1}$. To identify the more complicated algebras A_{n_1,n_2,n_3} , one would need to consider more complicated surface operators, such as $S_{0,1,1}$. With the elements above, one can study more complicated junctions by combining Miura operators and vertex operators fused along topological or holomorphic direction and recover a very rich story that I do not have time to discuss in its full glory.

5.3. Connection to PT modules

Let me at least briefly mention a connection to the Pandaripande-Thomas box counting [Pandharipande-Thomas (2009)] of the topological vertex $C_{\lambda,\mu,\nu}$ [Aganagic-Klemm-Marino-Vafa (2003)] labelled by a triple of partitions λ, μ, ν . We have identified the gauge-invariant operator associated to the configuration of *n* lines with orientation along \mathbb{C}_{ϵ_1} and *m* lines with orientation along \mathbb{C}_{ϵ_2} ending from the right with

$$\mathcal{O}|0\rangle = \exp[-\epsilon_1\phi(z_1)]\ldots\exp[-\epsilon_1\phi(z_n)]\exp[-\epsilon_2\phi(\tilde{z}_1)]\ldots\exp[-\epsilon_2\phi(\tilde{z}_m)]|0\rangle.$$

The right action of $A_{n,m,0}$ and the action of modes of the $\mathfrak{gl}(1)$ current algebra generates a rather complicated module for both algebras. One can project to an $A_{n,m,0}$ -module by taking an overlap the highest-weight state

$$\langle n\epsilon_1 + m\epsilon_2 | \mathcal{O} | 0 \rangle = \prod_{m < n} (z_i - z_j)^{-\frac{\epsilon_1}{\epsilon_2}} \prod_{m,n} (z_i - \tilde{z}_j)^{-1} \prod_{m < n} (\tilde{z}_i - \tilde{z}_j)^{-\frac{\epsilon_2}{\epsilon_1}}.$$

One can check that the action of $A_{m,n,0}$ on $\langle n\epsilon_1 + m\epsilon_2 | \mathcal{O} | 0 \rangle$ generates a nice highest-weight module with a basis labelled by Pandharipande-Thomas box configurations associated to the topological vertex $C_{(m),(n),0}$. A trivial example is $A_{1,0,0}$ acting on $\langle \epsilon_1 | \mathcal{O} | 0 \rangle = 1$ and producing the module $\mathbb{C}[z]$ with the obvious action of $\frac{z^n}{\epsilon_1}$ and $\epsilon_1 \partial^2$ and with character

$$C_{(1),0,0} = \operatorname{Tr}_{\mathbb{C}[z]} q^{z\partial} = \frac{1}{1-q} = 1 + q + q^2 + q^3 + \dots$$

It turns out that one can generally define $\mathcal{A}\text{-modules}$ labelled by a triple of partitions λ, μ, ν with a basis labelled by Pandharipande-Thomas box configurations. The gauge-invariance condition relating the action of \mathcal{A} and \mathcal{W}_∞ then leads to a categorification of the relation between PT and DT topological vertices due to Pandharipande and Thomas

$$\chi_{\lambda,\mu,\nu} = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^n} C_{\lambda,\mu,\nu}.$$

ロット 本語 マイヨマー 日

6. Summary and outlook

To summarize:

- We identified the gauge-invariance condition satisfied by operators describing M2-M5 brane junctions in twisted M-theory.
- We re-interpret basic objects from the theory of VOAs (the Miura operator, degenerate fields) as building blocks of gauge-invariant junctions. This leads to a new perspective on these objects and their connection with Coulomb-branch algebras and integrable systems.
- Composition of junctions is consistent with the fusion of line and surface operators. This allows us to built more complicated junctions starting from the elementary ones.
- Endpoints of M2-branes ending on M5-branes lead to \mathcal{W}_{∞} -modules labelled by a triple of partitions when viewed from the point of view of M5-branes and \mathcal{A} -modules labelled by a triple of partitions when viewed from the point of view of M2-branes. The connection between them categorifies the Pandharipande-Thomas conjectural relation between the DT and the PT topological vertex.

6. Summary

There are many possible directions one could take from here:

- Some of our claims remain somewhat conjectural and deserve further study. I expect our definition of PT modules to admit a simplification.
- A natural question is a generalization of our setup to configurations with M2 and M5 branes compactified on other toric three-folds.
- Our gauge-invariance condition (together with other results) should be derivable directly from a perturbative analysis in the 5d Chern-Simons theory.
- Some of the modules we construct should admit a geometric construction via correspondences acting on moduli spaces associated to our geometry.
- Our story should admit a generalization replacing $\mathbb{C}^2 \times \mathbb{R}$ by $\mathbb{C} \times \mathbb{C}^* \times \mathbb{R}$ or $\mathbb{C}^* \times \mathbb{C}^* \times \mathbb{R}$ leading to trigonometric Calogero-Moser systems and more.
- M5 branes can be supported on either of the two C's inside C² × R, a possibility that we have not investigated.